This RMarkdown file replicates 67 studies published in APSR, AJPS, and JOP (2010-2022) that employ instrumental variable (IV) designs as their primary identification strategy.

Click the Code button in the top right and select Show All Code to reveal all code used in this RMarkdown. Click Show in paragraphs to reveal the code used to generate a finding.

The replication files can be downloaded from here. Check out our paper to see more results of the meta-analysis. Click here for more details of ivDiag, the R package that makes the replications possible.



Mannual & Setup

See below for instructions on how to read the output statistics:

  • est_ols stores treatment effect estimates from the naive OLS estimation. ‘Analytic’ corresponds to analytic asymptotic standard errors (SEs) and confidence intervals (CIs). ‘Boot.c’ and ‘Boot.t’ represent inferential methods based on bootstrapped coefficients and bootstrapped t-statistics, respectively.

  • est_2sls stores treatment effect estimates from the 2SLS estimation.

  • AR stores results from the Anderson-Rubin test. The confidence region (CR) is produced by the inversion method. ‘AR.bounded = TRUE’ means that the CR is bounded and not empty.

  • F.stat stores F statistics based on classic SEs (F.standard), H.W. robust SEs (F.robust), cluster-robust SEs (F.cluster), bootstrapped or cluster-bootstrapped SEs (F.bootstrap) and the effective F (F.effective). In the one-treatment-one-instrument case, F.effective is the same as F.robust (if there is no clustering structure) or F.cluster (if there is one).

  • rho stores the partial correlation coefficient between the treatment and the predicted treatment from the first stage regression.

  • tf.cF stores the results from the tF-cF procedure. Specifically, cF corresponds to the adjusted critical value based on the first stage (effective) F statistic for the subsequent t-test.

  • est_rf stores the results from the reduced form regression. The control variables are partialled out.

  • est_fs stores the results from the first stage regression. The control variables are partialled out.

  • p_iv stores the number of instruments. N and N_cl stores the the number of observations and the number of clusters (if there is a clustering structure), respectively. df stores the degree of freedom from the 2SLS regression.

  • nvalues stores the numbers of unique values in the outcome, treatment, and instrument.


Setup environment and load libraries.

rm(list=ls())
library(remotes)
library(kableExtra)
library(haven)
library(tidyverse)
library(ivmodel)
library(doParallel)
library(foreach)
library(estimatr)
require(AER)
library(lfe)
library(glue)
#path <- "..." # set your path
setwd(path)
# install.packages("ivDiag", repos='http://cran.us.r-project.org')
library(ivDiag)
# number of cores
cores <- 15


Acharya, Blackwell, and Sen (2016)

Replication Summary
Unit of analysis county
Treatment slave proportion in 1860
Instrument measures of the environmental suitability for growing cotton
Outcome proportion Democrat
Model Table2(2)
df<-readRDS("jop_Acharya_etal_2016.rds")
Y <- "dem"
D <-"pslave1860"
Z <- "cottonsuit"
controls <- c("x2", "rugged", "latitude", "x2", "longitude", "x3","x4", "water1860")
cl <- NULL
FE <- 'code'
weights<-"sample.size"
(g<-ivDiag(data=df, Y=Y, D=D, Z=Z, controls=controls, FE =FE, 
  cl =cl,weights=weights, cores = cores))
## $est_ols
##             Coef     SE       t CI 2.5% CI 97.5% p.value
## Analytic -0.0318 0.0474 -0.6701 -0.1247   0.0612  0.5028
## Boot.c   -0.0318 0.0457 -0.6959 -0.1182   0.0594  0.4820
## Boot.t   -0.0318 0.0474 -0.6701 -0.1341   0.0706  0.5260
## 
## $est_2sls
##             Coef     SE       t CI 2.5% CI 97.5% p.value
## Analytic -0.2766 0.1343 -2.0596 -0.5399  -0.0134  0.0394
## Boot.c   -0.2766 0.1443 -1.9166 -0.5778  -0.0274  0.0240
## Boot.t   -0.2766 0.1343 -2.0596 -0.5506  -0.0026  0.0470
## 
## $AR
## $AR$Fstat
##         F       df1       df2         p 
##    4.8310    1.0000 1118.0000    0.0282 
## 
## $AR$ci.print
## [1] "[-0.5829, -0.0322]"
## 
## $AR$ci
## [1] -0.5829 -0.0322
## 
## $AR$bounded
## [1] TRUE
## 
## 
## $F_stat
##  F.standard    F.robust   F.cluster F.bootstrap F.effective 
##    106.4957     37.6527          NA     37.4893     37.6527 
## 
## $rho
## [1] 0.2973
## 
## $tF
##       F      cF    Coef      SE       t  CI2.5% CI97.5% p-value 
## 37.6527  2.2528 -0.2766  0.1343 -2.0596 -0.5792  0.0259  0.0731 
## 
## $est_rf
##               Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## cottonsuit -0.1128 0.0518  0.0294 0.0521   -0.209   -0.0123     0.024
## 
## $est_fs
##              Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## cottonsuit 0.4079 0.0665       0 0.0666   0.2722    0.5389         0
## 
## $p_iv
## [1] 1
## 
## $N
## [1] 1120
## 
## $N_cl
## NULL
## 
## $df
## [1] 1098
## 
## $nvalues
##      dem pslave1860 cottonsuit
## [1,] 911       1077       1120
## 
## attr(,"class")
## [1] "ivDiag"
plot_coef(g)

Alt, Marshall, and Lassen (2016)

Replication Summary
Unit of analysis individual
Treatment unemployment expectations
Instrument assignment to receiving an aggregate unemployment forecast
Outcome vote intention
Model Table2(1)
df<- readRDS("jop_Alt_etal_2015.rds")
D <- "urate_fut"
Y <- "gov"
Z <- "treatment"
controls <- "urate_now"
cl <- NULL
FE <- NULL
weights<-NULL
(g<-ivDiag(data=df, Y=Y, D=D, Z=Z, controls=controls, FE =FE, 
  cl =cl,weights=weights, cores = cores))
## $est_ols
##             Coef     SE       t CI 2.5% CI 97.5% p.value
## Analytic -0.0131 0.0026 -5.0845 -0.0182  -0.0081       0
## Boot.c   -0.0131 0.0026 -5.0844 -0.0182  -0.0082       0
## Boot.t   -0.0131 0.0026 -5.0845 -0.0182  -0.0080       0
## 
## $est_2sls
##             Coef     SE       t CI 2.5% CI 97.5% p.value
## Analytic -0.0347 0.0139 -2.5022 -0.0619  -0.0075  0.0123
## Boot.c   -0.0347 0.0141 -2.4677 -0.0632  -0.0059  0.0140
## Boot.t   -0.0347 0.0139 -2.5022 -0.0632  -0.0063  0.0090
## 
## $AR
## $AR$Fstat
##         F       df1       df2         p 
##    0.0017    1.0000 5703.0000    0.9671 
## 
## $AR$ci.print
## [1] "[-0.0664, 0.0721]"
## 
## $AR$ci
## [1] -0.0664  0.0721
## 
## $AR$bounded
## [1] TRUE
## 
## 
## $F_stat
##  F.standard    F.robust   F.cluster F.bootstrap F.effective 
##     60.1863     68.9098          NA     70.4143     83.3152 
## 
## $rho
## [1] 0.0801
## 
## $tF
##       F      cF    Coef      SE       t  CI2.5% CI97.5% p-value 
## 83.3152  2.0100 -0.0347  0.0139 -2.5022 -0.0626 -0.0068  0.0147 
## 
## $est_rf
##            Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## treatment 0.027 0.0243  0.2661 0.0235  -0.0189    0.0733     0.242
## 
## $est_fs
##              Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## treatment -0.9354 0.1169       0 0.1115  -1.1474   -0.7167         0
## 
## $p_iv
## [1] 1
## 
## $N
## [1] 5705
## 
## $N_cl
## NULL
## 
## $df
## [1] 5702
## 
## $nvalues
##      gov urate_fut treatment
## [1,]   2        88         8
## 
## attr(,"class")
## [1] "ivDiag"
plot_coef(g)

Arias and Stasavage (2019)

Replication Summary
Unit of analysis country*year
Treatment government expenditures
Instrument trade shock \(\times\) UK bond yield
Outcome regular leader turnover
Model Table3(2)
# Variables are already residualized against controls, fixed effects, and unit-specific trends
df<-readRDS("jop_Arias_etal_2019.rds")
Y <- "regular_res"
D <- "dexpenditures_res"
Z <- "interact_res"
controls <- NULL
cl<-c("ccode","year")
FE<-NULL
weights<-NULL
(g<-ivDiag(data=df, Y=Y, D=D, Z=Z, controls=controls, FE =FE, 
  cl =cl,weights=weights, cores = cores))
## $est_ols
##             Coef     SE       t CI 2.5% CI 97.5% p.value
## Analytic -0.0215 0.0359 -0.5975 -0.0919   0.0490  0.5502
## Boot.c   -0.0215 0.0387 -0.5550 -0.0917   0.0586  0.5606
## Boot.t   -0.0215 0.0359 -0.5975 -0.0734   0.0304  0.4394
## 
## $est_2sls
##            Coef      SE      t CI 2.5% CI 97.5% p.value
## Analytic 0.8282  1.6891 0.4903 -2.4824   4.1389  0.6239
## Boot.c   0.8282 45.6868 0.0181 -2.6185  10.2256  0.4763
## Boot.t   0.8282  1.6891 0.4903 -1.2954   2.9518  0.3994
## 
## $AR
## $AR$Fstat
##         F       df1       df2         p 
##    0.2643    1.0000 2743.0000    0.6073 
## 
## $AR$ci.print
## [1] "[-2.1784, 5.7604]"
## 
## $AR$ci
## [1] -2.1784  5.7604
## 
## $AR$bounded
## [1] TRUE
## 
## 
## $F_stat
##  F.standard    F.robust   F.cluster F.bootstrap F.effective 
##      3.0429      3.4739     14.4763      6.6775     14.4763 
## 
## $rho
## [1] 0.0333
## 
## $tF
##       F      cF    Coef      SE       t  CI2.5% CI97.5% p-value 
## 14.4763  2.9071  0.8282  1.6891  0.4903 -4.0822  5.7387  0.7410 
## 
## $est_rf
##               Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## interact_res 0.276 0.5369  0.6072 0.4687  -0.4812    1.3997    0.4362
## 
## $est_fs
##                Coef     SE p.value  SE.b CI.b2.5% CI.b97.5% p.value.b
## interact_res 0.3332 0.0876   1e-04 0.129    0.015    0.5542      0.04
## 
## $p_iv
## [1] 1
## 
## $N
## [1] 2745
## 
## $N_cl
## [1] 31
## 
## $df
## [1] 2743
## 
## $nvalues
##      regular_res dexpenditures_res interact_res
## [1,]        2745              2745         2745
## 
## attr(,"class")
## [1] "ivDiag"
plot_coef(g)

Baccini and Weymouth (2021)

Replication Summary
Unit of analysis county
Treatment Manufacturing Layoffs
Instrument Bartik instrument
Outcome Change of Democratic Vote Share
Model Table2(3)
df <- readRDS("apsr_baccini_etal_2021.rds")
D <-"msl_pc4y2"
Y <- "ddem_votes_pct1"
Z <-  "bartik_leo5"
controls <- c("LAU_unemp_rate_4y", "pers_m_total_share_4y", "pers_coll_share_4y",
              "white_counties_4y", "msl_service_pc4y")
cl <- NULL
FE <- "id_state"
weights<-NULL
(g<-ivDiag(data=df, Y=Y, D=D, Z=Z, controls=controls, FE =FE, 
  cl =cl,weights=weights, cores = cores))
## $est_ols
##             Coef     SE       t CI 2.5% CI 97.5% p.value
## Analytic -0.0127 0.0113 -1.1240 -0.0348   0.0094   0.261
## Boot.c   -0.0127 0.0115 -1.1079 -0.0371   0.0084   0.208
## Boot.t   -0.0127 0.0113 -1.1240 -0.0348   0.0094   0.258
## 
## $est_2sls
##             Coef     SE       t CI 2.5% CI 97.5% p.value
## Analytic -0.0433 0.0194 -2.2308 -0.0813  -0.0053  0.0257
## Boot.c   -0.0433 0.0190 -2.2723 -0.0802  -0.0076  0.0300
## Boot.t   -0.0433 0.0194 -2.2308 -0.0805  -0.0061  0.0270
## 
## $AR
## $AR$Fstat
##         F       df1       df2         p 
##    5.0579    1.0000 3063.0000    0.0246 
## 
## $AR$ci.print
## [1] "[-0.0809, -0.0056]"
## 
## $AR$ci
## [1] -0.0809 -0.0056
## 
## $AR$bounded
## [1] TRUE
## 
## 
## $F_stat
##  F.standard    F.robust   F.cluster F.bootstrap F.effective 
##   1537.5647    468.6180          NA    479.3029    468.6180 
## 
## $rho
## [1] 0.5815
## 
## $tF
##        F       cF     Coef       SE        t   CI2.5%  CI97.5%  p-value 
## 468.6180   1.9600  -0.0433   0.0194  -2.2308  -0.0813  -0.0053   0.0257 
## 
## $est_rf
##                Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## bartik_leo5 -4.5381 2.0355  0.0258 1.9848  -8.2082    -0.779      0.03
## 
## $est_fs
##                 Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## bartik_leo5 104.8786 4.8448       0 4.7905  96.2456  114.5827         0
## 
## $p_iv
## [1] 1
## 
## $N
## [1] 3065
## 
## $N_cl
## NULL
## 
## $df
## [1] 3010
## 
## $nvalues
##      ddem_votes_pct1 msl_pc4y2 bartik_leo5
## [1,]            3062      2913        2771
## 
## attr(,"class")
## [1] "ivDiag"
plot_coef(g)

Bhavnani and Lee (2018)

Replication Summary
Unit of analysis district*period
Treatment bureaucrats’ embeddedness
Instrument early-career job assignment
Outcome proportion of villages with high schools
Model Table1(4)
df <-readRDS("jop_Bhavnani_etal_2018.rds")
D <- "ALLlocal"
Y <- "Phigh"
Z <- "EXALLlocal"
controls <- c("ALLbachdivi", "lnnewpop", "lnnvill", "p_rural", "p_work",
              "p_aglab", "p_sc", "p_st", "lnmurderpc", "stategov", "natgov")
cl <- "distcode71"
FE<- c('distcode71',"year")
weights<-NULL
(g<-ivDiag(data=df, Y=Y, D=D, Z=Z, controls=controls, FE =FE, 
  cl =cl,weights=weights, cores = cores))
## $est_ols
##            Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 0.0195 0.0073 2.6753  0.0052   0.0337  0.0075
## Boot.c   0.0195 0.0074 2.6417  0.0046   0.0326  0.0100
## Boot.t   0.0195 0.0073 2.6753  0.0089   0.0300  0.0000
## 
## $est_2sls
##           Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 0.022 0.0100 2.1986  0.0024   0.0417  0.0279
## Boot.c   0.022 0.0099 2.2176  0.0016   0.0414  0.0280
## Boot.t   0.022 0.0100 2.1986  0.0067   0.0374  0.0020
## 
## $AR
## $AR$Fstat
##        F      df1      df2        p 
##   5.0041   1.0000 567.0000   0.0257 
## 
## $AR$ci.print
## [1] "[0.0028, 0.0419]"
## 
## $AR$ci
## [1] 0.0028 0.0419
## 
## $AR$bounded
## [1] TRUE
## 
## 
## $F_stat
##  F.standard    F.robust   F.cluster F.bootstrap F.effective 
##    243.2947    215.8574    236.8206    260.8563    236.8206 
## 
## $rho
## [1] 0.7002
## 
## $tF
##        F       cF     Coef       SE        t   CI2.5%  CI97.5%  p-value 
## 236.8206   1.9600   0.0220   0.0100   2.1986   0.0024   0.0417   0.0279 
## 
## $est_rf
##              Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## EXALLlocal 0.0121 0.0055  0.0267 0.0054    8e-04    0.0224     0.028
## 
## $est_fs
##              Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## EXALLlocal 0.5504 0.0358       0 0.0341   0.4825    0.6147         0
## 
## $p_iv
## [1] 1
## 
## $N
## [1] 569
## 
## $N_cl
## [1] 303
## 
## $df
## [1] 253
## 
## $nvalues
##      Phigh ALLlocal EXALLlocal
## [1,]   567      493        318
## 
## attr(,"class")
## [1] "ivDiag"
plot_coef(g)

Barth, Finseraas, and Moene (2015)

Replication Summary
Unit of analysis country*year
Treatment wage inequality
Instrument adjusted bargaining coverage; effective number of union confederations
Outcome welfare support
Model Table4(1)
df<- readRDS("ajps_Barth_2015.rds")
D <-"ld9d1"
Y <- "welfareleft"
Z <- c("l2ip_adjcov5", "l2ip_enucfs")
controls <- c("lgdpgr", "lelderly", "llntexp", "lud", "ludsq", 
              "lechp", "lnet", "lannual", "ltrend", "ltrendsq")
cl <- FE <- "countrynumber"
weights<-NULL
(g<-ivDiag(data=df, Y=Y, D=D, Z=Z, controls=controls, FE =FE, 
  cl =cl,weights=weights, cores = cores))
## $est_ols
##             Coef     SE       t CI 2.5% CI 97.5% p.value
## Analytic -0.7755 0.2358 -3.2886 -1.2376  -0.3133   0.001
## Boot.c   -0.7755 0.3210 -2.4160 -1.3919  -0.1284   0.026
## Boot.t   -0.7755 0.2358 -3.2886 -1.1978  -0.3531   0.004
## 
## $est_2sls
##             Coef     SE       t CI 2.5% CI 97.5% p.value
## Analytic -1.4265 0.7779 -1.8339 -2.9511   0.0981  0.0667
## Boot.c   -1.4265 1.6966 -0.8408 -4.2167   1.6345  0.3140
## Boot.t   -1.4265 0.7779 -1.8339 -2.9774   0.1244  0.0650
## 
## $AR
## $AR$Fstat
##        F      df1      df2        p 
##   3.6053   2.0000 114.0000   0.0303 
## 
## $AR$ci.print
## [1] "[-4.0005, -0.1197]"
## 
## $AR$ci
## [1] -4.0005 -0.1197
## 
## $AR$bounded
## [1] TRUE
## 
## 
## $F_stat
##  F.standard    F.robust   F.cluster F.bootstrap F.effective 
##      9.7741     15.0268     11.5754      3.0233      8.1611 
## 
## $rho
## [1] 0.4345
## 
## $est_rf
##                Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## l2ip_adjcov5 0.0184 0.0124  0.1377 0.0192  -0.0237    0.0492     0.344
## l2ip_enucfs  0.1687 0.2420  0.4858 0.3924  -0.7804    0.7658     0.748
## 
## $est_fs
##                 Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## l2ip_adjcov5 -0.0096 0.0046  0.0383 0.0067  -0.0278   -0.0006     0.040
## l2ip_enucfs  -0.1542 0.0777  0.0473 0.1001  -0.2869    0.0924     0.194
## 
## $p_iv
## [1] 2
## 
## $N
## [1] 117
## 
## $N_cl
## [1] 21
## 
## $df
## [1] 20
## 
## $nvalues
##      welfareleft ld9d1 l2ip_adjcov5 l2ip_enucfs
## [1,]         117   117          106         112
## 
## attr(,"class")
## [1] "ivDiag"
plot_coef(g)

Blair, Di Salvatore, and Smidt (2022)

Replication Summary
Unit of analysis UN peacekeeping operations event level
Treatment fragmentation of any given PKO mandate
Instrument average fragmentation of all ongoing PKO mandates
Outcome process performance
Model TableD7(3)
df <-readRDS("ajps_Blair_2022.rds")
df<-as.data.frame(df)
D<-"L_avg"
Y <- "sh_perfassist_pb"
Z <- "L_fract_assistv3"
  controls <- c("L_experman_assist_pbv3","L_numtask_assist_pbv3","L_lntot",
                "L_deployment","L_lnpop","L_lngdp","L_ucdpconflictspell","L_polity")
cl <- NULL
FE <- c("date3","iso3n")
weights<-NULL
(g<-ivDiag(data=df, Y=Y, D=D, Z=Z, controls=controls, FE =FE, 
  cl =cl,weights=weights, cores = cores))
## $est_ols
##             Coef     SE       t CI 2.5% CI 97.5% p.value
## Analytic -1.3155 0.2040 -6.4481 -1.7153  -0.9156       0
## Boot.c   -1.3155 0.2631 -4.9993 -1.7584  -0.6891       0
## Boot.t   -1.3155 0.2040 -6.4481 -1.8097  -0.8212       0
## 
## $est_2sls
##             Coef     SE       t CI 2.5% CI 97.5% p.value
## Analytic -1.8768 0.4711 -3.9841 -2.8001  -0.9535  0.0001
## Boot.c   -1.8768 0.6900 -2.7201 -3.0698  -0.3181  0.0160
## Boot.t   -1.8768 0.4711 -3.9841 -3.0190  -0.7346  0.0000
## 
## $AR
## $AR$Fstat
##        F      df1      df2        p 
##  20.4937   1.0000 845.0000   0.0000 
## 
## $AR$ci.print
## [1] "[-2.7247, -1.1042]"
## 
## $AR$ci
## [1] -2.7247 -1.1042
## 
## $AR$bounded
## [1] TRUE
## 
## 
## $F_stat
##  F.standard    F.robust   F.cluster F.bootstrap F.effective 
##    186.0679     60.6442          NA     25.7752     60.6442 
## 
## $rho
## [1] 0.4793
## 
## $tF
##       F      cF    Coef      SE       t  CI2.5% CI97.5% p-value 
## 60.6442  2.0913 -1.8768  0.4711 -3.9841 -2.8619 -0.8917  0.0002 
## 
## $est_rf
##                   Coef    SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## L_fract_assistv3 1.805 0.464   1e-04 0.7635   0.2932    3.3377     0.016
## 
## $est_fs
##                     Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## L_fract_assistv3 -0.9617 0.1235       0 0.1894  -1.4772   -0.7235         0
## 
## $p_iv
## [1] 1
## 
## $N
## [1] 847
## 
## $N_cl
## NULL
## 
## $df
## [1] 624
## 
## $nvalues
##      sh_perfassist_pb L_avg L_fract_assistv3
## [1,]               56    55              222
## 
## attr(,"class")
## [1] "ivDiag"
plot_coef(g)

Blattman, Hartman, and Blair (2014)

Replication Summary
Unit of analysis resident
Treatment mass education campaign for dispute resolution
Instrument assignment to treatment blocks
Outcome serious land dispute
Model Table9(8)
df <- readRDS("apsr_Blattman_etal_2014.rds")
df$district <- 0
for (i in 1:15) {df$district[which(df[,paste0("district",i)]==1)] <- i}
D <-"months_treated"
Y <- "fightweap_dummy"
Z <- c("block1", "block2", "block3")
controls <- c("ageover60", "age40_60", "age20_40", 
 "yrs_edu", "female", "stranger", "christian",
 "minority", "cashearn_imputedhst", "noland",
 "land_sizehst", "farm_sizehst", "lndtake_dum",
 "housetake_dum", "vsmall", "small", 
 "small2", "small3", "quartdummy", "cedulevel_bc",
 "ctownhh_log_el", "cwealthindex_bc", "cviol_experienced_bc",
 "clndtake_bc", "cviol_scale_bc", "clandconf_scale_bc",
 "cwitchcraft_scale_bc", "cpalaviol_imputed_bc",
 "cprog_ldr_beliefs_bc", "cattitudes_tribe_bc",
 "crelmarry_bc", "trainee")
cl <- "district"
FE <- "district"
weights<-NULL
(g<-ivDiag(data=df, Y=Y, D=D, Z=Z, controls=controls, FE =FE, 
  cl =cl,weights=weights, cores = cores))
## $est_ols
##           Coef    SE      t CI 2.5% CI 97.5% p.value
## Analytic 7e-04 5e-04 1.2355  -4e-04   0.0018  0.2167
## Boot.c   7e-04 7e-04 1.0047  -8e-04   0.0018  0.4100
## Boot.t   7e-04 5e-04 1.2355  -6e-04   0.0019  0.3030
## 
## $est_2sls
##           Coef    SE      t CI 2.5% CI 97.5% p.value
## Analytic 9e-04 5e-04 1.9157   0e+00   0.0018  0.0554
## Boot.c   9e-04 6e-04 1.4632  -5e-04   0.0019  0.2420
## Boot.t   9e-04 5e-04 1.9157  -2e-04   0.0020  0.0910
## 
## $AR
## $AR$Fstat
##         F       df1       df2         p 
##    5.0886    3.0000 1896.0000    0.0016 
## 
## $AR$ci.print
## [1] "[0.0006, 0.0022]"
## 
## $AR$ci
## [1] 0.0006 0.0022
## 
## $AR$bounded
## [1] TRUE
## 
## 
## $F_stat
##  F.standard    F.robust   F.cluster F.bootstrap F.effective 
##   2756.3845   2472.2847    234.3492     86.5029     52.1000 
## 
## $rho
## [1] 0.9039
## 
## $est_rf
##          Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## block1 0.0263 0.0085  0.0020 0.0140  -0.0048    0.0467     0.098
## block2 0.0027 0.0099  0.7812 0.0130  -0.0232    0.0264     0.856
## block3 0.0085 0.0064  0.1816 0.0114  -0.0125    0.0266     0.324
## 
## $est_fs
##           Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## block1 20.0361 0.7567       0 1.3524  17.3024   22.7559     0.000
## block2 12.9786 1.7805       0 2.1314   8.9177   16.8667     0.000
## block3  6.7831 1.3081       0 1.8664   2.7421   10.4095     0.002
## 
## $p_iv
## [1] 3
## 
## $N
## [1] 1900
## 
## $N_cl
## [1] 15
## 
## $df
## [1] 14
## 
## $nvalues
##      fightweap_dummy months_treated block1 block2 block3
## [1,]               2             34      2      2      2
## 
## attr(,"class")
## [1] "ivDiag"
plot_coef(g)

Carnegie and Marinov (2017)

Replication Summary
Unit of analysis country*year
Treatment foreign aid
Instrument being a former colony of one of the Council members
Outcome CIRI Human Empowerment index
Model Table1(2)
df<-readRDS("ajps_Carnegie_etal_2017.rds")
D <-"EV"
Y <- "new_empinxavg"
Z <- "l2CPcol2"
controls <- c( "covloggdp", "covloggdpCF", "covloggdpC",
              "covdemregionF", "covdemregion", "coviNY_GDP_PETR_RT_ZSF",
              "coviNY_GDP_PETR_RT_ZS", "covwvs_relF", "covwvs_rel",
              "covwdi_imp", "covwdi_fdiF", "covwdi_fdi",
              "covwdi_expF", "covwdi_exp", "covihme_ayemF", "covihme_ayem")
cl<-c("year","ccode")
FE <- c("year","ccode")
weights<-NULL
(g<-ivDiag(data=df, Y=Y, D=D, Z=Z, controls=controls, FE =FE, 
  cl =cl,weights=weights, cores = cores))
## $est_ols
##            Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 0.1903 0.1376 1.3831 -0.0794   0.4601  0.1666
## Boot.c   0.1903 0.0772 2.4643  0.0548   0.3529  0.0040
## Boot.t   0.1903 0.1376 1.3831  0.0362   0.3445  0.0200
## 
## $est_2sls
##            Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 1.7054 0.8436 2.0217  0.0520   3.3589  0.0432
## Boot.c   1.7054 7.7277 0.2207 -1.3412   6.3190  0.1960
## Boot.t   1.7054 0.8436 2.0217  0.2587   3.1522  0.0340
## 
## $AR
## $AR$Fstat
##         F       df1       df2         p 
##    2.7312    1.0000 1790.0000    0.0986 
## 
## $AR$ci.print
## [1] "[-0.5722, 4.0169]"
## 
## $AR$ci
## [1] -0.5722  4.0169
## 
## $AR$bounded
## [1] TRUE
## 
## 
## $F_stat
##  F.standard    F.robust   F.cluster F.bootstrap F.effective 
##      4.5101      4.5766      7.5007      4.2871      7.5007 
## 
## $rho
## [1] 0.0523
## 
## $tF
##       F      cF    Coef      SE       t  CI2.5% CI97.5% p-value 
##  7.5007  4.1570  1.7054  0.8436  2.0217 -1.8014  5.2123  0.3405 
## 
## $est_rf
##            Coef   SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## l2CPcol2 0.2632 0.16  0.0998 0.1971  -0.0907    0.6528     0.154
## 
## $est_fs
##            Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## l2CPcol2 0.1543 0.0564  0.0062 0.0745    2e-04    0.2994      0.05
## 
## $p_iv
## [1] 1
## 
## $N
## [1] 1792
## 
## $N_cl
## [1] 20
## 
## $df
## [1] 19
## 
## $nvalues
##      new_empinxavg   EV l2CPcol2
## [1,]            57 1601        2
## 
## attr(,"class")
## [1] "ivDiag"
plot_coef(g)

Charron and Lapuente (2013)

Replication Summary
Unit of analysis region
Treatment clientelism
Instrument consolidation of clientelistic networks in regions where rulers have historically less constraints to their decisions
Outcome quality of governments
Model Table3(2a)
df<-readRDS("jop_Charron_etal_2013.rds")
D <- "pc_all4_tol"
Y <- "eqi"
Z <- c("pc_institutions","literacy1880")
controls <- c("logpop", "capitalregion", "ger", "it", "uk","urb_1860_1850_30")
cl <- NULL
FE <- NULL
weights<-NULL
(g<-ivDiag(data=df, Y=Y, D=D, Z=Z, controls=controls, FE =FE, 
  cl =cl,weights=weights, cores = cores))
## $est_ols
##            Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 0.0176 0.0034 5.1860  0.0110   0.0243   0.000
## Boot.c   0.0176 0.0035 5.0019  0.0104   0.0240   0.000
## Boot.t   0.0176 0.0034 5.1860  0.0101   0.0252   0.001
## 
## $est_2sls
##            Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 0.0233 0.0041 5.7196  0.0153   0.0313       0
## Boot.c   0.0233 0.0043 5.4434  0.0150   0.0313       0
## Boot.t   0.0233 0.0041 5.7196  0.0146   0.0320       0
## 
## $AR
## $AR$Fstat
##       F     df1     df2       p 
## 18.2062  2.0000 53.0000  0.0000 
## 
## $AR$ci.print
## [1] "[0.0170, 0.0297]"
## 
## $AR$ci
## [1] 0.0170 0.0297
## 
## $AR$bounded
## [1] TRUE
## 
## 
## $F_stat
##  F.standard    F.robust   F.cluster F.bootstrap F.effective 
##     37.2005     31.2712          NA     29.4968     19.9514 
## 
## $rho
## [1] 0.7828
## 
## $est_rf
##                   Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## pc_institutions 0.1941 0.0765  0.0111 0.0814   0.0379    0.3717     0.018
## literacy1880    0.0204 0.0043  0.0000 0.0051   0.0103    0.0297     0.002
## 
## $est_fs
##                    Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## pc_institutions 12.1093 2.3469   0e+00 2.4755   7.6147   16.9375      0.00
## literacy1880     0.5348 0.1319   1e-04 0.1595   0.2037    0.8131      0.01
## 
## $p_iv
## [1] 2
## 
## $N
## [1] 56
## 
## $N_cl
## NULL
## 
## $df
## [1] 48
## 
## $nvalues
##      eqi pc_all4_tol pc_institutions literacy1880
## [1,]  56          44              14           38
## 
## attr(,"class")
## [1] "ivDiag"
plot_coef(g)

Charron et al. (2017)

Replication Summary
Unit of analysis region
Treatment more developed bureaucracy
Instrument proportion of Protestant residents in a region; aggregate literacy in 1880
Outcome percent of single bidders in procurement contracts
Model Table5(4)
df <- readRDS("jop_Charron_etal_2017.rds")
D <- "pubmerit"
Y <- "lcri_euc1_r"
Z <- c("litrate_1880", 'pctprot')
controls <- c("logpopdens", "logppp11", "trust", "pctwomenparl")
cl <- "country"
FE <- NULL
weights<-"eu_popweights"
(g<-ivDiag(data=df, Y=Y, D=D, Z=Z, controls=controls, FE =FE, 
  cl =cl,weights=weights, cores = cores))
## $est_ols
##           Coef     SE       t CI 2.5% CI 97.5% p.value
## Analytic -0.09 0.0155 -5.8068 -0.1204  -0.0597   0.000
## Boot.c   -0.09 0.0230 -3.9113 -0.1092  -0.0238   0.012
## Boot.t   -0.09 0.0155 -5.8068 -0.1386  -0.0415   0.012
## 
## $est_2sls
##             Coef     SE       t CI 2.5% CI 97.5% p.value
## Analytic -0.1472 0.0422 -3.4919 -0.2299  -0.0646  0.0005
## Boot.c   -0.1472 0.1191 -1.2366 -0.2896   0.0484  0.1100
## Boot.t   -0.1472 0.0422 -3.4919 -0.2413  -0.0532  0.0100
## 
## $AR
## $AR$Fstat
##        F      df1      df2        p 
##   5.5325   2.0000 172.0000   0.0047 
## 
## $AR$ci.print
## [1] "[-0.2577, -0.0452]"
## 
## $AR$ci
## [1] -0.2577 -0.0452
## 
## $AR$bounded
## [1] TRUE
## 
## 
## $F_stat
##  F.standard    F.robust   F.cluster F.bootstrap F.effective 
##     27.8775     23.2292     36.2651      6.4538     14.8219 
## 
## $rho
## [1] 0.4992
## 
## $est_rf
##                 Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## litrate_1880 -0.0009 0.0005  0.0767 0.0006  -0.0019    0.0005     0.206
## pctprot      -0.1769 0.1131  0.1177 0.1436  -0.4387    0.1096     0.298
## 
## $est_fs
##                Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## litrate_1880 0.0060 0.0025  0.0184 0.0030  -0.0002    0.0115     0.058
## pctprot      1.1959 0.3235  0.0002 0.4766  -0.0044    1.9236     0.054
## 
## $p_iv
## [1] 2
## 
## $N
## [1] 175
## 
## $N_cl
## [1] 20
## 
## $df
## [1] 169
## 
## $nvalues
##      lcri_euc1_r pubmerit litrate_1880 pctprot
## [1,]         173      173           78     131
## 
## attr(,"class")
## [1] "ivDiag"
plot_coef(g)

Chong et al. (2019)

Replication Summary
Unit of analysis household
Treatment actual proportion of households treated in the locality
Instrument treatment assignment in get-out-to-vote campaigns
Outcome voted in 2013 presidential election
Model Table4(1)
df <-readRDS("ajps_Chong_etal_2019.rds")
D <-"ratio_treat"
Y <- "elecc_presid2013"
Z <- c("D2D30", "D2D40", "D2D50")
controls <-c("age", "married", "children", "num_children",
             "employed", "languag", "yrseduc", "bornloc",
             "hh_asset_index", "log_pop", "mujeres_perc",
             "pob_0_14_perc", "pob_15_64_perc", "pob_65mas_perc",
             "analfabetos_perc", "asiste_escuela_perc", 
             "TASA_women", "TASA_men", "electricidad_perc",
             "agua_perc", "desague_perc", "basura_perc",
             "fono_fijo_perc", "fono_cel_perc", "ocupantes", 
             "Rural",  "distancia2_final", "db_age", 
             "db_married", "db_children", "db_num_children", 
             "db_employed", "db_languag", "db_yrseduc", 
             "db_bornloc", "db_hh_asset_index", "db_log_pop", 
             "db_mujeres_perc", "db_pob_0_14_perc", 
             "db_pob_15_64_perc", "db_pob_65mas_perc", 
             "db_analfabetos_perc", "db_asiste_escuela_perc",
             "db_TASA_women", "db_TASA_men", "db_electricidad_perc",
             "db_agua_perc", "db_desague_perc", "db_basura_perc",
             "db_fono_fijo_perc", "db_fono_cel_perc", 
             "db_ocupantes", "db_Rural", "db_distancia2_final",
             "dpto1", "elecc_presid2008", "db_elecc_presid2008")
cl <- "loc"
FE <- NULL
weights<-NULL
(g<-ivDiag(data=df, Y=Y, D=D, Z=Z, controls=controls, FE =FE, 
  cl =cl,weights=weights, cores = cores))
## $est_ols
##            Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 0.0715 0.0421 1.6984 -0.0110   0.1541  0.0894
## Boot.c   0.0715 0.0451 1.5879 -0.0226   0.1534  0.1420
## Boot.t   0.0715 0.0421 1.6984 -0.0020   0.1451  0.0550
## 
## $est_2sls
##            Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 0.1242 0.0527 2.3584  0.0210   0.2275  0.0184
## Boot.c   0.1242 0.0575 2.1610  0.0059   0.2341  0.0420
## Boot.t   0.1242 0.0527 2.3584  0.0420   0.2065  0.0010
## 
## $AR
## $AR$Fstat
##         F       df1       df2         p 
##    2.5349    3.0000 3346.0000    0.0551 
## 
## $AR$ci.print
## [1] "[-0.0022, 0.2791]"
## 
## $AR$ci
## [1] -0.0022  0.2791
## 
## $AR$bounded
## [1] TRUE
## 
## 
## $F_stat
##  F.standard    F.robust   F.cluster F.bootstrap F.effective 
##   1163.8658    270.5690     37.7653     31.6111     32.5611 
## 
## $rho
## [1] 0.7163
## 
## $est_rf
##         Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## D2D30 0.0194 0.0333  0.5611 0.0344  -0.0598    0.0811     0.604
## D2D40 0.0651 0.0243  0.0075 0.0265   0.0102    0.1144     0.024
## D2D50 0.0190 0.0277  0.4940 0.0302  -0.0398    0.0771     0.548
## 
## $est_fs
##         Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## D2D30 0.2996 0.0434       0 0.0465   0.2238    0.4050         0
## D2D40 0.3946 0.0754       0 0.0789   0.2608    0.5629         0
## D2D50 0.2663 0.0438       0 0.0476   0.1873    0.3744         0
## 
## $p_iv
## [1] 3
## 
## $N
## [1] 3350
## 
## $N_cl
## [1] 282
## 
## $df
## [1] 3316
## 
## $nvalues
##      elecc_presid2013 ratio_treat D2D30 D2D40 D2D50
## [1,]                2          56     2     2     2
## 
## attr(,"class")
## [1] "ivDiag"
plot_coef(g)

Cirone and Van Coppenolle (2018)

Replication Summary
Unit of analysis deputy*year
Treatment budget committee service
Instrument random assignment of budget incumbents to bureaux
Outcome legislator sponsorship on a budget bill
Model Table2(2)
df<- readRDS("jop_Cirone_etal_2018.rds")
D <- "budget"
Y <- "F1to5billbudgetdummy"
Z <- "bureauotherbudgetincumbent"
controls <- c("budgetincumbent", "cummyears", "cummyears2",
              "age", "age2", "permargin", "permargin2",
              "inscrits", "inscrits2", "proprietaire", 
              "lib_all", "civil", "paris")
cl <- c("id","year")
FE <- "year"
weights<-NULL
(g<-ivDiag(data=df, Y=Y, D=D, Z=Z, controls=controls, FE =FE, 
  cl =cl,weights=weights, cores = cores))
## $est_ols
##            Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 0.0305 0.0218 1.3957 -0.0123   0.0733  0.1628
## Boot.c   0.0305 0.0188 1.6179 -0.0019   0.0700  0.0720
## Boot.t   0.0305 0.0218 1.3957  0.0001   0.0608  0.0500
## 
## $est_2sls
##            Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 0.6341 0.3548 1.7872 -0.0613   1.3295  0.0739
## Boot.c   0.6341 0.2542 2.4943  0.1807   1.2138  0.0020
## Boot.t   0.6341 0.3548 1.7872  0.1936   1.0746  0.0100
## 
## $AR
## $AR$Fstat
##         F       df1       df2         p 
##    3.0669    1.0000 8145.0000    0.0799 
## 
## $AR$ci.print
## [1] "[-0.0755, 1.3224]"
## 
## $AR$ci
## [1] -0.0755  1.3224
## 
## $AR$bounded
## [1] TRUE
## 
## 
## $F_stat
##  F.standard    F.robust   F.cluster F.bootstrap F.effective 
##     32.1302     34.2557    168.0023     32.3297    168.0023 
## 
## $rho
## [1] 0.0628
## 
## $tF
##        F       cF     Coef       SE        t   CI2.5%  CI97.5%  p-value 
## 168.0023   1.9600   0.6341   0.3548   1.7872  -0.0613   1.3295   0.0739 
## 
## $est_rf
##                               Coef    SE p.value   SE.b CI.b2.5% CI.b97.5%
## bureauotherbudgetincumbent -0.0052 0.003  0.0801 0.0019  -0.0092   -0.0016
##                            p.value.b
## bureauotherbudgetincumbent     0.002
## 
## $est_fs
##                               Coef    SE p.value   SE.b CI.b2.5% CI.b97.5%
## bureauotherbudgetincumbent -0.0083 6e-04       0 0.0015  -0.0111   -0.0055
##                            p.value.b
## bureauotherbudgetincumbent         0
## 
## $p_iv
## [1] 1
## 
## $N
## [1] 8147
## 
## $N_cl
## [1] 1330
## 
## $df
## [1] 13
## 
## $nvalues
##      F1to5billbudgetdummy budget bureauotherbudgetincumbent
## [1,]                    2      2                          9
## 
## attr(,"class")
## [1] "ivDiag"
plot_coef(g)

Colantone and Stanig (2018a)

Replication Summary
Unit of analysis region
Treatment regional-level import shock from China
Instrument imports from China to the United States * local industrial structure
Outcome leave share
Model Table1(6)
df<-readRDS("apsr_Colantone_etal_2018.rds")
D <-'import_shock'
Y <- "leave_share"
Z <- "instrument_for_shock"
controls <- c("immigrant_share", "immigrant_arrivals")
cl <- "fix"
FE <- "nuts1"
weights<-NULL
(g<-ivDiag(data=df, Y=Y, D=D, Z=Z, controls=controls, FE =FE, 
  cl =cl,weights=weights, cores = cores))
## $est_ols
##             Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 12.0854 3.8903 3.1066  4.4605  19.7104  0.0019
## Boot.c   12.0854 4.2397 2.8506  3.6809  20.3413  0.0020
## Boot.t   12.0854 3.8903 3.1066  5.9006  18.2702  0.0000
## 
## $est_2sls
##             Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 12.2993 3.9320 3.1280  4.5926  20.0060  0.0018
## Boot.c   12.2993 4.3534 2.8252  3.3021  21.0123  0.0020
## Boot.t   12.2993 3.9320 3.1280  6.1152  18.4835  0.0000
## 
## $AR
## $AR$Fstat
##        F      df1      df2        p 
##  10.5300   1.0000 165.0000   0.0014 
## 
## $AR$ci.print
## [1] "[4.9072, 19.7701]"
## 
## $AR$ci
## [1]  4.9072 19.7701
## 
## $AR$bounded
## [1] TRUE
## 
## 
## $F_stat
##  F.standard    F.robust   F.cluster F.bootstrap F.effective 
##   2158.0662    792.4682    613.9804    556.7748    613.9804 
## 
## $rho
## [1] 0.9663
## 
## $tF
##        F       cF     Coef       SE        t   CI2.5%  CI97.5%  p-value 
## 613.9804   1.9600  12.2993   3.9320   3.1280   4.5926  20.0060   0.0018 
## 
## $est_rf
##                        Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## instrument_for_shock 1.5671 0.5015  0.0018 0.5602   0.4251     2.612     0.002
## 
## $est_fs
##                        Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## instrument_for_shock 0.1274 0.0051       0 0.0054   0.1188    0.1398         0
## 
## $p_iv
## [1] 1
## 
## $N
## [1] 167
## 
## $N_cl
## [1] 39
## 
## $df
## [1] 153
## 
## $nvalues
##      leave_share import_shock instrument_for_shock
## [1,]         167          148                  148
## 
## attr(,"class")
## [1] "ivDiag"
plot_coef(g)

Colantone and Stanig (2018b)

Replication Summary
Unit of analysis region*year
Treatment regional import shock from China
Instrument Chinese imports to the United States
Outcome Economic nationalism
Model Table1(1)
df <-readRDS("ajps_Colantone_etal_2018.rds")
D <-"import_shock"
Y <- "median_nationalism"
Z <- "instrument_for_shock"
controls <- NULL
cl <- "nuts2_year"
FE <- "fix_effect"
weights<-NULL
(g<-ivDiag(data=df, Y=Y, D=D, Z=Z, controls=controls, FE =FE, 
  cl =cl,weights=weights, cores = cores))
## $est_ols
##            Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 0.6442 0.2934 2.1955  0.0691   1.2193  0.0281
## Boot.c   0.6442 0.3683 1.7491  0.1995   1.6373  0.0020
## Boot.t   0.6442 0.2934 2.1955 -0.0012   1.2896  0.0510
## 
## $est_2sls
##            Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 1.3096 0.4682 2.7970  0.3919   2.2273  0.0052
## Boot.c   1.3096 0.5679 2.3061  0.4379   2.6491  0.0000
## Boot.t   1.3096 0.4682 2.7970  0.4453   2.1739  0.0030
## 
## $AR
## $AR$Fstat
##         F       df1       df2         p 
##   10.9563    1.0000 7780.0000    0.0009 
## 
## $AR$ci.print
## [1] "[0.5323, 2.6393]"
## 
## $AR$ci
## [1] 0.5323 2.6393
## 
## $AR$bounded
## [1] TRUE
## 
## 
## $F_stat
##  F.standard    F.robust   F.cluster F.bootstrap F.effective 
##   1810.3678     42.8350     19.1709     11.7530     19.1709 
## 
## $rho
## [1] 0.4358
## 
## $tF
##       F      cF    Coef      SE       t  CI2.5% CI97.5% p-value 
## 19.1709  2.6386  1.3096  0.4682  2.7970  0.0741  2.5450  0.0377 
## 
## $est_rf
##                        Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## instrument_for_shock 0.0514 0.0156   0.001 0.0205   0.0207    0.1006         0
## 
## $est_fs
##                        Coef    SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## instrument_for_shock 0.0392 0.009       0 0.0114   0.0262    0.0695         0
## 
## $p_iv
## [1] 1
## 
## $N
## [1] 7782
## 
## $N_cl
## [1] 739
## 
## $df
## [1] 7724
## 
## $nvalues
##      median_nationalism import_shock instrument_for_shock
## [1,]                167          739                  739
## 
## attr(,"class")
## [1] "ivDiag"
plot_coef(g)

Coppock and Green (2016)

Replication Summary
Unit of analysis individual
Treatment voting in November 2007 municipal elections
Instrument mailing showing 2005 Vote
Outcome voting in the 2008 presidential primary
Model Table2(2)
df<-readRDS("ajps_Coppock_etal_2016.rds")
D <-"og2007"
Y <- "JAN2008"
Z <- "treat2"
controls <- NULL
cl <- "hh"
FE <- NULL
weights<-NULL
(g<-ivDiag(data=df, Y=Y, D=D, Z=Z, controls=controls, FE =FE, 
  cl =cl,weights=weights, cores = cores))
## $est_ols
##            Coef     SE        t CI 2.5% CI 97.5% p.value
## Analytic 0.3126 0.0014 229.6550  0.3099   0.3152       0
## Boot.c   0.3126 0.0014 228.0173  0.3099   0.3152       0
## Boot.t   0.3126 0.0014 229.6550  0.3107   0.3145       0
## 
## $est_2sls
##            Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 0.3728 0.0909 4.1013  0.1946   0.5509   0.000
## Boot.c   0.3728 0.0956 3.9007  0.1805   0.5521   0.002
## Boot.t   0.3728 0.0909 4.1013  0.2441   0.5015   0.000
## 
## $AR
## $AR$Fstat
##           F         df1         df2           p 
##     15.4540      1.0000 773554.0000      0.0001 
## 
## $AR$ci.print
## [1] "[0.1946, 0.5564]"
## 
## $AR$ci
## [1] 0.1946 0.5564
## 
## $AR$bounded
## [1] TRUE
## 
## 
## $F_stat
##  F.standard    F.robust   F.cluster F.bootstrap F.effective 
##    165.8659    151.8337    113.3680    117.2744    113.3680 
## 
## $rho
## [1] 0.0146
## 
## $tF
##        F       cF     Coef       SE        t   CI2.5%  CI97.5%  p-value 
## 113.3680   1.9600   0.3728   0.0909   4.1013   0.1946   0.5509   0.0000 
## 
## $est_rf
##          Coef     SE p.value  SE.b CI.b2.5% CI.b97.5% p.value.b
## treat2 0.0187 0.0048   1e-04 0.005   0.0089    0.0286     0.002
## 
## $est_fs
##          Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## treat2 0.0502 0.0047       0 0.0046   0.0416    0.0594         0
## 
## $p_iv
## [1] 1
## 
## $N
## [1] 773556
## 
## $N_cl
## [1] 562460
## 
## $df
## [1] 773554
## 
## $nvalues
##      JAN2008 og2007 treat2
## [1,]       2      2      2
## 
## attr(,"class")
## [1] "ivDiag"
plot_coef(g)

Croke et al. (2016)

Replication Summary
Unit of analysis individual
Treatment education attainment
Instrument access to the secondary education
Outcome political participation
Model Table2(b1)
df <-readRDS("apsr_Croke_etal_2016.rds")
D <- "edu"
Y <- "part_scale"
Z <- "treatment"
controls <-NULL
cl<- "district"
FE<- "year_survey"
weights<-NULL
(g<-ivDiag(data=df, Y=Y, D=D, Z=Z, controls=controls, FE =FE, 
  cl =cl,weights=weights, cores = cores))
## $est_ols
##             Coef     SE       t CI 2.5% CI 97.5% p.value
## Analytic -0.0204 0.0078 -2.6133 -0.0357  -0.0051   0.009
## Boot.c   -0.0204 0.0077 -2.6418 -0.0322  -0.0031   0.014
## Boot.t   -0.0204 0.0078 -2.6133 -0.0374  -0.0035   0.018
## 
## $est_2sls
##            Coef     SE       t CI 2.5% CI 97.5% p.value
## Analytic -0.098 0.0268 -3.6620 -0.1505  -0.0456   3e-04
## Boot.c   -0.098 0.0281 -3.4861 -0.1523  -0.0446   0e+00
## Boot.t   -0.098 0.0268 -3.6620 -0.1384  -0.0577   0e+00
## 
## $AR
## $AR$Fstat
##         F       df1       df2         p 
##   16.1473    1.0000 1840.0000    0.0001 
## 
## $AR$ci.print
## [1] "[-0.1574, -0.0493]"
## 
## $AR$ci
## [1] -0.1574 -0.0493
## 
## $AR$bounded
## [1] TRUE
## 
## 
## $F_stat
##  F.standard    F.robust   F.cluster F.bootstrap F.effective 
##     79.7552     78.2588     71.1356     75.2296     71.1356 
## 
## $rho
## [1] 0.2041
## 
## $tF
##       F      cF    Coef      SE       t  CI2.5% CI97.5% p-value 
## 71.1356  2.0466 -0.0980  0.0268 -3.6620 -0.1528 -0.0432  0.0005 
## 
## $est_rf
##              Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## treatment -0.0657 0.0164   1e-04 0.0173  -0.0957   -0.0293         0
## 
## $est_fs
##             Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## treatment 0.6708 0.0795       0 0.0773   0.5296    0.8389         0
## 
## $p_iv
## [1] 1
## 
## $N
## [1] 1842
## 
## $N_cl
## [1] 61
## 
## $df
## [1] 1835
## 
## $nvalues
##      part_scale edu treatment
## [1,]          7   7         5
## 
## attr(,"class")
## [1] "ivDiag"
plot_coef(g)

De La O (2013)

Replication Summary
Unit of analysis village
Treatment early coverage of Conditional Cash Transfer
Instrument random assignment to early coverage
Outcome incumbent party’s vote share
Model Table3(b1)
df <- readRDS("ajps_De_La_O_2013.rds")
D <-"early_progresa_p"
Y <- "t2000"
Z <- "treatment"
controls <- c("avgpoverty","pobtot1994", "votos_totales1994", 
              "pri1994", "pan1994", "prd1994")
cl <- NULL
FE <- "villages"
weights<-NULL
(g<-ivDiag(data=df, Y=Y, D=D, Z=Z, controls=controls, FE =FE, 
  cl =cl,weights=weights, cores = cores))
## $est_ols
##            Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 0.0222 0.0466 0.4771 -0.0691   0.1136  0.6333
## Boot.c   0.0222 0.0470 0.4731 -0.0657   0.1164  0.7040
## Boot.t   0.0222 0.0466 0.4771 -0.0715   0.1160  0.6620
## 
## $est_2sls
##            Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 0.1563 0.0892 1.7521 -0.0185   0.3312  0.0798
## Boot.c   0.1563 0.0920 1.6983 -0.0049   0.3339  0.0600
## Boot.t   0.1563 0.0892 1.7521 -0.0338   0.3464  0.0980
## 
## $AR
## $AR$Fstat
##        F      df1      df2        p 
##   3.3846   1.0000 415.0000   0.0665 
## 
## $AR$ci.print
## [1] "[-0.0096, 0.3365]"
## 
## $AR$ci
## [1] -0.0096  0.3365
## 
## $AR$bounded
## [1] TRUE
## 
## 
## $F_stat
##  F.standard    F.robust   F.cluster F.bootstrap F.effective 
##    177.1916    153.2854          NA    150.7207    153.2854 
## 
## $rho
## [1] 0.556
## 
## $tF
##        F       cF     Coef       SE        t   CI2.5%  CI97.5%  p-value 
## 153.2854   1.9600   0.1563   0.0892   1.7521  -0.0185   0.3312   0.0798 
## 
## $est_rf
##             Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## treatment 0.0532 0.0296  0.0723 0.0303  -0.0017    0.1118      0.06
## 
## $est_fs
##             Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## treatment 0.3401 0.0275       0 0.0277   0.2873    0.3955         0
## 
## $p_iv
## [1] 1
## 
## $N
## [1] 417
## 
## $N_cl
## NULL
## 
## $df
## [1] 396
## 
## $nvalues
##      t2000 early_progresa_p treatment
## [1,]   407              251         2
## 
## attr(,"class")
## [1] "ivDiag"
plot_coef(g)

Dietrich and Wright (2015)

Replication Summary
Unit of analysis transition
Treatment economic aid
Instrument constructed Z
Outcome transitions to multipartyism
Model Table1(2)
df <- readRDS("jop_Dietrich_2015.rds")
D <- "econaid"
Y <- "mp"
Z <- c("Iinfl3","econaid_lgdp_g", "econaid_lpop_g",
       "econaid_cwar_g", "econaid_dnmp_g",
       "econaid_dnmp2_g", "econaid_dnmp3_g")
controls <- c('lgdp', 'lpop', 'cwar', 'dmp', 
              'dmp2', 'dmp3', "dnmp", "dnmp2", "dnmp3")
cl<- "cowcode"
FE <- NULL
weights<-NULL
(g<-ivDiag(data=df, Y=Y, D=D, Z=Z, controls=controls, FE =FE, 
  cl =cl,weights=weights, cores = cores))
## $est_ols
##            Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 0.0576 0.0233 2.4734  0.0119   0.1032  0.0134
## Boot.c   0.0576 0.0299 1.9243 -0.0109   0.1023  0.0900
## Boot.t   0.0576 0.0233 2.4734  0.0220   0.0931  0.0010
## 
## $est_2sls
##            Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 0.1075 0.0401 2.6795  0.0289   0.1861  0.0074
## Boot.c   0.1075 0.0498 2.1604 -0.0092   0.1974  0.0720
## Boot.t   0.1075 0.0401 2.6795  0.0356   0.1794  0.0050
## 
## $AR
## $AR$Fstat
##        F      df1      df2        p 
##   3.5039   7.0000 362.0000   0.0012 
## 
## $AR$ci.print
## [1] "[0.0361, 0.2102]"
## 
## $AR$ci
## [1] 0.0361 0.2102
## 
## $AR$bounded
## [1] TRUE
## 
## 
## $F_stat
##  F.standard    F.robust   F.cluster F.bootstrap F.effective 
##     28.9900     47.6878     22.5931      2.1562      5.4068 
## 
## $rho
## [1] 0.6026
## 
## $est_rf
##                    Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## Iinfl3           0.0382 0.0180  0.0341 0.0222  -0.0118    0.0756     0.122
## econaid_lgdp_g   0.0459 0.0246  0.0624 0.0473   0.0061    0.1917     0.030
## econaid_lpop_g   0.0049 0.0218  0.8229 0.0336  -0.0436    0.0853     0.784
## econaid_cwar_g  -0.0084 0.0635  0.8946 0.1007  -0.2433    0.1642     0.848
## econaid_dnmp_g  -0.0227 0.0268  0.3965 0.0293  -0.0713    0.0450     0.518
## econaid_dnmp2_g  0.0010 0.0011  0.3704 0.0013  -0.0021    0.0031     0.578
## econaid_dnmp3_g  0.0000 0.0000  0.4243 0.0000   0.0000    0.0000     0.698
## 
## $est_fs
##                    Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## Iinfl3           0.1561 0.0506  0.0020 0.0590   0.0091    0.2317     0.036
## econaid_lgdp_g   0.1664 0.1524  0.2749 0.2604  -0.4139    0.6380     0.550
## econaid_lpop_g   0.1839 0.0976  0.0596 0.1538  -0.2432    0.3725     0.346
## econaid_cwar_g  -0.2848 0.3413  0.4041 0.4906  -1.5694    0.4657     0.514
## econaid_dnmp_g  -0.0235 0.0899  0.7933 0.0973  -0.2418    0.1347     0.788
## econaid_dnmp2_g -0.0009 0.0045  0.8455 0.0050  -0.0084    0.0114     0.906
## econaid_dnmp3_g  0.0000 0.0001  0.5707 0.0001  -0.0001    0.0001     0.742
## 
## $p_iv
## [1] 7
## 
## $N
## [1] 370
## 
## $N_cl
## [1] 44
## 
## $df
## [1] 362
## 
## $nvalues
##      mp econaid Iinfl3 econaid_lgdp_g econaid_lpop_g econaid_cwar_g
## [1,]  2     370    370            370            370            370
##      econaid_dnmp_g econaid_dnmp2_g econaid_dnmp3_g
## [1,]            370             370             370
## 
## attr(,"class")
## [1] "ivDiag"
plot_coef(g)

DiGiuseppe and Shea (2022)

Replication Summary
Unit of analysis country*year
Treatment US support
Instrument echelon corridor
Outcome property rights
Model Table1(5)
df <-readRDS("jop_digiuseppe_2022.rds")
D <- "wi_usa_median"
Y<-"Fwi_v2stfisccap2"
Z <- "Echelon2"
controls <-c("wi_v2xcl_prpty","wi_compete", "wi_lnpop_wdi",
             "wi_lngdppc", "wi_polity2", "wi_polity2_2",  "wi_ny_gdp_totl_rt_zs",
             "wi_cwyrs", "wi_c2", "wi_c3", "coldwar")
cl<- NULL
FE<- NULL
weights<-NULL
(g<-ivDiag(data=df, Y=Y, D=D, Z=Z, controls=controls, FE =FE, 
  cl =cl,weights=weights, cores = cores))
## $est_ols
##            Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 0.0443 0.0156 2.8331  0.0136   0.0749  0.0046
## Boot.c   0.0443 0.0161 2.7518  0.0119   0.0740  0.0080
## Boot.t   0.0443 0.0156 2.8331  0.0132   0.0753  0.0080
## 
## $est_2sls
##            Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 0.8158 0.3217 2.5360  0.1853   1.4463  0.0112
## Boot.c   0.8158 0.5180 1.5748  0.2708   1.8645  0.0040
## Boot.t   0.8158 0.3217 2.5360  0.2278   1.4039  0.0130
## 
## $AR
## $AR$Fstat
##         F       df1       df2         p 
##    8.5251    1.0000 2366.0000    0.0035 
## 
## $AR$ci.print
## [1] "[0.2818, 1.8803]"
## 
## $AR$ci
## [1] 0.2818 1.8803
## 
## $AR$bounded
## [1] TRUE
## 
## 
## $F_stat
##  F.standard    F.robust   F.cluster F.bootstrap F.effective 
##     18.8218     12.1084          NA     12.1052     12.1084 
## 
## $rho
## [1] 0.089
## 
## $tF
##       F      cF    Coef      SE       t  CI2.5% CI97.5% p-value 
## 12.1084  3.1262  0.8158  0.3217  2.5360 -0.1899  1.8215  0.1118 
## 
## $est_rf
##            Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## Echelon2 0.1792 0.0615  0.0036 0.0623   0.0608     0.303     0.002
## 
## $est_fs
##            Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## Echelon2 0.2196 0.0631   5e-04 0.0631   0.0976    0.3422     0.002
## 
## $p_iv
## [1] 1
## 
## $N
## [1] 2368
## 
## $N_cl
## NULL
## 
## $df
## [1] 2355
## 
## $nvalues
##      Fwi_v2stfisccap2 wi_usa_median Echelon2
## [1,]              314          2368        2
## 
## attr(,"class")
## [1] "ivDiag"
plot_coef(g)

Dower et al. (2018) (a)

Replication Summary
Unit of analysis district*year
Treatment frequency of unrest
Instrument religious polarization
Outcome peasant representation
Model Table3(1)
df <- readRDS("apsr_Dower_etal_2018.rds")
D <-"afreq"
Y <-"peasantrepresentation_1864"
Z <-"religpolarf4_1870"
controls <- c("distance_moscow", "goodsoil", "lnurban", "lnpopn", "province_capital")
cl <- NULL
FE <- NULL
weights<-NULL
(g<-ivDiag(data=df, Y=Y, D=D, Z=Z, controls=controls, FE =FE, 
  cl =cl,weights=weights, cores = cores))
## $est_ols
##             Coef     SE       t CI 2.5% CI 97.5% p.value
## Analytic -3.8696 1.8013 -2.1483 -7.4001  -0.3391  0.0317
## Boot.c   -3.8696 1.8054 -2.1434 -7.4290  -0.2249  0.0380
## Boot.t   -3.8696 1.8013 -2.1483 -7.4072  -0.3320  0.0310
## 
## $est_2sls
##              Coef      SE       t  CI 2.5% CI 97.5% p.value
## Analytic -32.7701 17.3518 -1.8886 -66.7796   1.2393  0.0589
## Boot.c   -32.7701 20.5053 -1.5981 -86.0483  -5.6107  0.0140
## Boot.t   -32.7701 17.3518 -1.8886 -67.4960   1.9557  0.0570
## 
## $AR
## $AR$Fstat
##        F      df1      df2        p 
##   4.4669   1.0000 359.0000   0.0352 
## 
## $AR$ci.print
## [1] "[-84.4784, -2.5780]"
## 
## $AR$ci
## [1] -84.4784  -2.5780
## 
## $AR$bounded
## [1] TRUE
## 
## 
## $F_stat
##  F.standard    F.robust   F.cluster F.bootstrap F.effective 
##     12.0237     14.0828          NA     14.3238     14.0828 
## 
## $rho
## [1] 0.1812
## 
## $tF
##        F       cF     Coef       SE        t   CI2.5%  CI97.5%  p-value 
##  14.0828   2.9384 -32.7701  17.3518  -1.8886 -83.7561  18.2159   0.2078 
## 
## $est_rf
##                      Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## religpolarf4_1870 -3.9279 1.8715  0.0358 1.8304  -7.8389   -0.7072     0.014
## 
## $est_fs
##                     Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## religpolarf4_1870 0.1199 0.0319   2e-04 0.0317   0.0618    0.1844         0
## 
## $p_iv
## [1] 1
## 
## $N
## [1] 361
## 
## $N_cl
## NULL
## 
## $df
## [1] 354
## 
## $nvalues
##      peasantrepresentation_1864 afreq religpolarf4_1870
## [1,]                        128    12               361
## 
## attr(,"class")
## [1] "ivDiag"
plot_coef(g)

Dower et al. (2018) (b)

Replication Summary
Unit of analysis district*year
Treatment frequency of unrest
Instrument religious polarization
Outcome peasant representation
Model Table1(2)
df <- readRDS("apsr_Dower_etal_2018.rds")
D <-"afreq"
Y <-"peasantrepresentation_1864"
Z <-"serfperc1"
controls <- c("distance_moscow", "goodsoil", "lnurban", "lnpopn", "province_capital")
cl <- NULL
FE <- NULL
weights<-NULL
(g<-ivDiag(data=df, Y=Y, D=D, Z=Z, controls=controls, FE =FE, 
  cl =cl,weights=weights, cores = cores))
## $est_ols
##             Coef     SE       t CI 2.5% CI 97.5% p.value
## Analytic -4.2492 1.8297 -2.3224 -7.8353  -0.6631  0.0202
## Boot.c   -4.2492 1.8193 -2.3356 -7.8177  -0.8067  0.0200
## Boot.t   -4.2492 1.8297 -2.3224 -7.7575  -0.7409  0.0190
## 
## $est_2sls
##              Coef     SE       t  CI 2.5% CI 97.5% p.value
## Analytic -42.4545 8.4195 -5.0424 -58.9567 -25.9522       0
## Boot.c   -42.4545 8.8972 -4.7717 -61.6556 -28.3062       0
## Boot.t   -42.4545 8.4195 -5.0424 -60.7578 -24.1511       0
## 
## $AR
## $AR$Fstat
##        F      df1      df2        p 
##  52.2466   1.0000 363.0000   0.0000 
## 
## $AR$ci.print
## [1] "[-63.3348, -28.4781]"
## 
## $AR$ci
## [1] -63.3348 -28.4781
## 
## $AR$bounded
## [1] TRUE
## 
## 
## $F_stat
##  F.standard    F.robust   F.cluster F.bootstrap F.effective 
##     47.6256     51.0176          NA     51.1283     51.0176 
## 
## $rho
## [1] 0.3427
## 
## $tF
##        F       cF     Coef       SE        t   CI2.5%  CI97.5%  p-value 
##  51.0176   2.1457 -42.4545   8.4195  -5.0424 -60.5204 -24.3885   0.0000 
## 
## $est_rf
##               Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## serfperc1 -11.7823 1.6414       0 1.6529 -15.0498   -8.5644         0
## 
## $est_fs
##             Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## serfperc1 0.2775 0.0389       0 0.0388   0.2039    0.3542         0
## 
## $p_iv
## [1] 1
## 
## $N
## [1] 365
## 
## $N_cl
## NULL
## 
## $df
## [1] 358
## 
## $nvalues
##      peasantrepresentation_1864 afreq serfperc1
## [1,]                        128    12       361
## 
## attr(,"class")
## [1] "ivDiag"
plot_coef(g)

Dube and Naidu (2015)

Replication Summary
Unit of analysis municipality*year
Treatment changes in US funding to Colombia
Instrument US funding in countries outside of Latin America
Outcome the number of paramilitary attacks
Model Table1(1)
df<-readRDS("jop_Dube_etal_2015.rds")
D <- "bases6xlrmilnar_col"
Y <- "paratt"
Z <- "bases6xlrmilwnl"
controls <-"lnnewpop" 
cl <- "municipality"
FE <- c("year","municipality")
weights<-NULL
(g<-ivDiag(data=df, Y=Y, D=D, Z=Z, controls=controls, FE =FE, 
  cl =cl,weights=weights, cores = cores))
## $est_ols
##            Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 0.1503 0.0601 2.5001  0.0325   0.2682  0.0124
## Boot.c   0.1503 0.0619 2.4295  0.0396   0.2878  0.0080
## Boot.t   0.1503 0.0601 2.5001  0.0452   0.2554  0.0140
## 
## $est_2sls
##            Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 0.3149 0.1212 2.5977  0.0773   0.5525  0.0094
## Boot.c   0.3149 0.1241 2.5373  0.0819   0.5764  0.0040
## Boot.t   0.3149 0.1212 2.5977  0.0996   0.5302  0.0170
## 
## $AR
## $AR$Fstat
##          F        df1        df2          p 
##     6.7529     1.0000 16604.0000     0.0094 
## 
## $AR$ci.print
## [1] "[0.0797, 0.5525]"
## 
## $AR$ci
## [1] 0.0797 0.5525
## 
## $AR$bounded
## [1] TRUE
## 
## 
## $F_stat
##  F.standard    F.robust   F.cluster F.bootstrap F.effective 
##   7003.8727    810.8395 185092.5288 180413.2994 185092.5288 
## 
## $rho
## [1] 0.556
## 
## $tF
##           F          cF        Coef          SE           t      CI2.5% 
## 185092.5288      1.9600      0.3149      0.1212      2.5977      0.0773 
##     CI97.5%     p-value 
##      0.5525      0.0094 
## 
## $est_rf
##                   Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## bases6xlrmilwnl 1.1155 0.4293  0.0094 0.4397   0.2903    2.0492     0.004
## 
## $est_fs
##                   Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## bases6xlrmilwnl 3.5422 0.0082       0 0.0083    3.524    3.5573         0
## 
## $p_iv
## [1] 1
## 
## $N
## [1] 16606
## 
## $N_cl
## [1] 936
## 
## $df
## [1] 935
## 
## $nvalues
##      paratt bases6xlrmilnar_col bases6xlrmilwnl
## [1,]     13                  19              18
## 
## attr(,"class")
## [1] "ivDiag"
plot_coef(g)

Feigenbaum and Hall (2015)

Replication Summary
Unit of analysis congressional district*decade
Treatment localized trade shocks in congressional districts
Instrument Chinese exports to other economies*local exposure
Outcome trade score based on congressional voting
Model Table1(3)
df<-readRDS("jop_Feigenbaum_etal_2015.rds")
D <-"x"
Y <- "tradescore"
Z <- "z"
controls <- c("dem_share")
cl <- "state_cluster"
FE <- "decade"
weights<-NULL
(g<-ivDiag(data=df, Y=Y, D=D, Z=Z, controls=controls, FE =FE, 
  cl =cl,weights=weights, cores = cores))
## $est_ols
##            Coef     SE       t CI 2.5% CI 97.5% p.value
## Analytic -0.108 0.2965 -0.3643 -0.6891   0.4731  0.7157
## Boot.c   -0.108 0.3080 -0.3507 -0.6727   0.5506  0.7440
## Boot.t   -0.108 0.2965 -0.3643 -0.5475   0.3315  0.6250
## 
## $est_2sls
##             Coef     SE       t CI 2.5% CI 97.5% p.value
## Analytic -0.6976 0.3786 -1.8424 -1.4397   0.0445  0.0654
## Boot.c   -0.6976 0.3959 -1.7622 -1.4487   0.1005  0.0860
## Boot.t   -0.6976 0.3786 -1.8424 -1.2503  -0.1449  0.0120
## 
## $AR
## $AR$Fstat
##        F      df1      df2        p 
##   3.4825   1.0000 860.0000   0.0624 
## 
## $AR$ci.print
## [1] "[-1.4852, 0.0294]"
## 
## $AR$ci
## [1] -1.4852  0.0294
## 
## $AR$bounded
## [1] TRUE
## 
## 
## $F_stat
##  F.standard    F.robust   F.cluster F.bootstrap F.effective 
##   1189.3393    204.4798     75.5233     71.0582     75.5233 
## 
## $rho
## [1] 0.7622
## 
## $tF
##       F      cF    Coef      SE       t  CI2.5% CI97.5% p-value 
## 75.5233  2.0310 -0.6976  0.3786 -1.8424 -1.4666  0.0714  0.0754 
## 
## $est_rf
##      Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## z -0.5863 0.3145  0.0623 0.3395  -1.2695    0.0924     0.086
## 
## $est_fs
##     Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## z 0.8405 0.0967       0 0.0997   0.6925    1.0624         0
## 
## $p_iv
## [1] 1
## 
## $N
## [1] 862
## 
## $N_cl
## [1] 94
## 
## $df
## [1] 858
## 
## $nvalues
##      tradescore   x   z
## [1,]        709 698 697
## 
## attr(,"class")
## [1] "ivDiag"
plot_coef(g)

Flores-Macias and Kreps (2013)

Replication Summary
Unit of analysis country*year
Treatment trade volume
Instrument lagged energy production
Outcome foreign policy convergence
Model Table2(1)
df<- readRDS("jop_Flores_etal_2013.rds")
D <- "log_tot_trade"
Y <- "log_HRVOTE"
Z <- "lag_log_energ_prod"
controls <- c("log_cinc", "us_aid100", "log_tot_ustrade", 
              "Joint_Dem_Dum", "pts_score", "dummy2004")
cl <- NULL
FE <- 'statea'
weights<-NULL
(g<-ivDiag(data=df, Y=Y, D=D, Z=Z, controls=controls, FE =FE, 
  cl =cl,weights=weights, cores = cores))
## $est_ols
##            Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 0.0191 0.0044 4.3531  0.0105   0.0277       0
## Boot.c   0.0191 0.0047 4.1016  0.0109   0.0291       0
## Boot.t   0.0191 0.0044 4.3531  0.0099   0.0283       0
## 
## $est_2sls
##            Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 0.0456 0.0135 3.3747  0.0191   0.0721   7e-04
## Boot.c   0.0456 0.0143 3.1884  0.0203   0.0774   0e+00
## Boot.t   0.0456 0.0135 3.3747  0.0200   0.0713   1e-03
## 
## $AR
## $AR$Fstat
##        F      df1      df2        p 
##  14.1713   1.0000 590.0000   0.0002 
## 
## $AR$ci.print
## [1] "[0.0218, 0.0745]"
## 
## $AR$ci
## [1] 0.0218 0.0745
## 
## $AR$bounded
## [1] TRUE
## 
## 
## $F_stat
##  F.standard    F.robust   F.cluster F.bootstrap F.effective 
##     66.1143     53.6345          NA     45.8932     53.6345 
## 
## $rho
## [1] 0.3295
## 
## $tF
##       F      cF    Coef      SE       t  CI2.5% CI97.5% p-value 
## 53.6345  2.1276  0.0456  0.0135  3.3747  0.0169  0.0744  0.0019 
## 
## $est_rf
##                      Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## lag_log_energ_prod 0.1086 0.0301   3e-04 0.0311   0.0474    0.1681         0
## 
## $est_fs
##                      Coef    SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## lag_log_energ_prod 2.3803 0.325       0 0.3514   1.7287    3.0909         0
## 
## $p_iv
## [1] 1
## 
## $N
## [1] 592
## 
## $N_cl
## NULL
## 
## $df
## [1] 543
## 
## $nvalues
##      log_HRVOTE log_tot_trade lag_log_energ_prod
## [1,]         32           590                581
## 
## attr(,"class")
## [1] "ivDiag"
plot_coef(g)

Gehlbach and Keefer (2012)

Replication Summary
Unit of analysis nondemocratic episode
Treatment age of ruling party less leader years in office
Instrument whether the first ruler in a nondemocratic episode is a military leader
Outcome private invest
Model Table1(4)
df<- readRDS("jop_Gelbach_etal_2012.rds")
D <- "gov1_yrs"
Y <- "gfcf_priv_gdp"
Z <- "military_first_alt"
controls <- c("tenure", "stabs", "fuelex_gdp", "oresex_gdp",
              "frac_ethn", "frac_relig", "frac_ling", "pop_yng_pct", 
              "pop_tot", "pop_ru_pct", "land_km", "gdppc_ppp_2005_us")
cl <- "ifs_code"
FE <-NULL
weights<-NULL
(g<-ivDiag(data=df, Y=Y, D=D, Z=Z, controls=controls, FE =FE, 
  cl =cl,weights=weights, cores = cores))
## $est_ols
##            Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 0.1304 0.0351 3.7118  0.0615   0.1992   2e-04
## Boot.c   0.1304 0.0422 3.0871  0.0513   0.2203   4e-03
## Boot.t   0.1304 0.0351 3.7118  0.0648   0.1959   0e+00
## 
## $est_2sls
##            Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 0.3956 0.1798 2.2001  0.0432   0.7479  0.0278
## Boot.c   0.3956 0.3012 1.3133  0.0960   1.0532  0.0160
## Boot.t   0.3956 0.1798 2.2001  0.1004   0.6907  0.0250
## 
## $AR
## $AR$Fstat
##       F     df1     df2       p 
##  6.3658  1.0000 97.0000  0.0133 
## 
## $AR$ci.print
## [1] "[0.0971, 0.9654]"
## 
## $AR$ci
## [1] 0.0971 0.9654
## 
## $AR$bounded
## [1] TRUE
## 
## 
## $F_stat
##  F.standard    F.robust   F.cluster F.bootstrap F.effective 
##      6.3713      9.2042      9.5714      8.9379      9.5714 
## 
## $rho
## [1] 0.2641
## 
## $tF
##       F      cF    Coef      SE       t  CI2.5% CI97.5% p-value 
##  9.5714  3.5187  0.3956  0.1798  2.2001 -0.2371  1.0282  0.2204 
## 
## $est_rf
##                       Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## military_first_alt -3.3385 1.4135  0.0182 1.3948  -6.0499    -0.816     0.014
## 
## $est_fs
##                       Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## military_first_alt -8.4401 2.7281   0.002 2.8231 -13.9826   -3.1669     0.002
## 
## $p_iv
## [1] 1
## 
## $N
## [1] 99
## 
## $N_cl
## [1] 86
## 
## $df
## [1] 85
## 
## $nvalues
##      gfcf_priv_gdp gov1_yrs military_first_alt
## [1,]            99       63                  2
## 
## attr(,"class")
## [1] "ivDiag"
plot_coef(g)

Gerber, Huber, and Washington (2010)

Replication Summary
Unit of analysis individual
Treatment aligning party identification with latent partisanship
Instrument being sent mail
Outcome voting and party alignment scale
Model Table4(1)
df <- readRDS("apsr_Gerber_etal_2010.rds")
D <-"pt_id_with_lean"
Y <- "pt_voteevalalignindex"
Z <- "treat"
controls <- c("pre_lean_dem", "age", "age2" ,"regyear" ,
              "regyearmissing", "twonames", "combined_female", 
              "voted2006", "voted2004", "voted2002", "voted2000",
              "voted1998", "voted1996", "interest", "pre_aligned_vh",
              "pre_direct_unemp", "pre_direct_econ","pre_direct_bushap",
              "pre_direct_congapp")
cl <- NULL
FE <- NULL
weights<-NULL
(g<-ivDiag(data=df, Y=Y, D=D, Z=Z, controls=controls, FE =FE, 
  cl =cl,weights=weights, cores = cores))
## $est_ols
##            Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 0.5658 0.1709 3.3105  0.2308   0.9008   9e-04
## Boot.c   0.5658 0.1782 3.1752  0.2417   0.9164   0e+00
## Boot.t   0.5658 0.1709 3.3105  0.2197   0.9119   1e-03
## 
## $est_2sls
##            Coef      SE      t CI 2.5% CI 97.5% p.value
## Analytic 3.8231  2.6392 1.4486 -1.3497   8.9960  0.1475
## Boot.c   3.8231 12.8102 0.2984 -2.5546  20.0555  0.1140
## Boot.t   3.8231  2.6392 1.4486 -2.3077   9.9540  0.1710
## 
## $AR
## $AR$Fstat
##        F      df1      df2        p 
##   3.8593   1.0000 409.0000   0.0501 
## 
## $AR$ci.print
## [1] "[0.0227, Inf)"
## 
## $AR$ci
## [1] 0.0227    Inf
## 
## $AR$bounded
## [1] FALSE
## 
## 
## $F_stat
##  F.standard    F.robust   F.cluster F.bootstrap F.effective 
##      2.9926      3.1563          NA      3.1638      3.1563 
## 
## $rho
## [1] 0.0873
## 
## $tF
##        F       cF     Coef       SE        t   CI2.5%  CI97.5%  p-value 
##   3.1563  18.6600   3.8231   2.6392   1.4486 -45.4249  53.0712   0.8791 
## 
## $est_rf
##         Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## treat 0.2742 0.1429  0.0551 0.1442  -0.0191    0.5647     0.066
## 
## $est_fs
##         Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## treat 0.0717 0.0404  0.0756 0.0403  -0.0066    0.1528     0.064
## 
## $p_iv
## [1] 1
## 
## $N
## [1] 411
## 
## $N_cl
## NULL
## 
## $df
## [1] 390
## 
## $nvalues
##      pt_voteevalalignindex pt_id_with_lean treat
## [1,]                    10               2     2
## 
## attr(,"class")
## [1] "ivDiag"
plot_coef(g)

Goldstein and You (2017)

Replication Summary
Unit of analysis city
Treatment lobbying spending
Instrument direct flight to Washington, DC
Outcome total earmarks or grants awarded
Model Table4(4)
df <- readRDS("ajps_Goldstein_etal_2017.rds")
df <- as.data.frame(df)
Y <-"ln_recovery"
D <-"ln_citylob"
Z <- c("direct_flight_dc", "diverge2_r")
controls <- c("pop_r", "land_r", "water_r", "senior_r", "student_r", "ethnic_r",
              "mincome_r", "unemp_r", "poverty_r", "gini_r", "city_propertytaxshare_r", 
              "city_intgovrevenueshare_r", "city_airexp_r", "houdem_r", "ln_countylob")
cl <- "state2"
FE <- "state2"
weights <- NULL
(g<-ivDiag(data=df, Y=Y, D=D, Z=Z, controls=controls, FE =FE, 
  cl =cl, weights=weights, cores = cores, parallel = TRUE))
## $est_ols
##            Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 0.0648 0.0208 3.1171  0.0240   0.1055  0.0018
## Boot.c   0.0648 0.0219 2.9633  0.0295   0.1171  0.0000
## Boot.t   0.0648 0.0208 3.1171  0.0294   0.1002  0.0040
## 
## $est_2sls
##           Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 0.476 0.1361 3.4987  0.2094   0.7427   5e-04
## Boot.c   0.476 0.1514 3.1445  0.1523   0.7723   8e-03
## Boot.t   0.476 0.1361 3.4987  0.2869   0.6652   0e+00
## 
## $AR
## $AR$Fstat
##         F       df1       df2         p 
##    8.2957    2.0000 1259.0000    0.0003 
## 
## $AR$ci.print
## [1] "[0.1958, 0.9263]"
## 
## $AR$ci
## [1] 0.1958 0.9263
## 
## $AR$bounded
## [1] TRUE
## 
## 
## $F_stat
##  F.standard    F.robust   F.cluster F.bootstrap F.effective 
##     16.6195     13.7688     15.7426     15.1202     15.1587 
## 
## $rho
## [1] 0.1645
## 
## $est_rf
##                    Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## direct_flight_dc 1.2403 0.5428  0.0223 0.6381  -0.3263    2.1070     0.136
## diverge2_r       0.3010 0.1688  0.0745 0.1842  -0.0485    0.6774     0.094
## 
## $est_fs
##                    Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## direct_flight_dc 2.6658 0.7247   2e-04 0.7421   1.0373    3.9603     0.002
## diverge2_r       0.6070 0.2164   5e-03 0.2186   0.2293    1.0806     0.002
## 
## $p_iv
## [1] 2
## 
## $N
## [1] 1262
## 
## $N_cl
## [1] 50
## 
## $df
## [1] 49
## 
## $nvalues
##      ln_recovery ln_citylob direct_flight_dc diverge2_r
## [1,]        1196        135                2       1262
## 
## attr(,"class")
## [1] "ivDiag"
plot_coef(g)

Grossman, Pierskalla, and Boswell Dean (2017)

Replication Summary
Unit of analysis region * year
Treatment government fragmentation
Instrument the number of distinct landmasses;
length of medium and small streams;
over-time variation in the number of regional governments
Outcome public goods provision
Model Table1(8)
df<-readRDS("jop_Grossman_2017.rds")
Y <- "ServicesCA"
D <- "ladminpc_l5"
Z <- c("lmeanMINUSi_adminpc_l6", "lmeanMINUSi_adminpc2_l6", 
       "herf", "herf2", "llength", "llength2")
controls <- c("lpop_l", "wdi_urban_l", "lgdppc_l", "conflict_l",
              "dpi_state_l", "p_polity2_l", 
              "loilpc_l", "aid_pc_l","al_ethnic")
cl <- "ccodecow"
FE <- "year"
weights<-NULL
(g<-ivDiag(data=df, Y=Y, D=D, Z=Z, controls=controls, FE =FE, 
  cl =cl,weights=weights, cores = cores))
## $est_ols
##            Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 0.0364 0.0978 0.3721 -0.1554   0.2282  0.7098
## Boot.c   0.0364 0.1221 0.2983 -0.1795   0.2873  0.7734
## Boot.t   0.0364 0.0978 0.3721 -0.1854   0.2582  0.7048
## 
## $est_2sls
##            Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 0.4164 0.1623 2.5650  0.0982   0.7345  0.0103
## Boot.c   0.4164 0.2111 1.9728 -0.1338   0.7126  0.1476
## Boot.t   0.4164 0.1623 2.5650 -0.1258   0.9586  0.1008
## 
## $AR
## $AR$Fstat
##        F      df1      df2        p 
##   3.8390   6.0000 511.0000   0.0009 
## 
## $AR$ci.print
## [1] "[0.1177, 1.3043]"
## 
## $AR$ci
## [1] 0.1177 1.3043
## 
## $AR$bounded
## [1] TRUE
## 
## 
## $F_stat
##  F.standard    F.robust   F.cluster F.bootstrap F.effective 
##     39.9978     40.9874     11.9593      1.3892      6.1390 
## 
## $rho
## [1] 0.581
## 
## $est_rf
##                            Coef     SE p.value     SE.b  CI.b2.5% CI.b97.5%
## lmeanMINUSi_adminpc_l6   6.0801 7.3987  0.4112  11.2868  -18.3789   28.5617
## lmeanMINUSi_adminpc2_l6 -3.9097 2.3810  0.1006   3.1871  -10.2923    2.7037
## herf                    -0.0170 2.4059  0.9943 425.3199  -66.7639 1594.3878
## herf2                   -0.0545 1.7185  0.9747 219.0669 -822.1921   33.6917
## llength                  0.0669 0.0507  0.1867   0.8307   -0.7072    2.6300
## llength2                -0.0029 0.0037  0.4309   0.0311   -0.0948    0.0249
##                         p.value.b
## lmeanMINUSi_adminpc_l6     0.5198
## lmeanMINUSi_adminpc2_l6    0.2432
## herf                       0.7193
## herf2                      0.6778
## llength                    0.3389
## llength2                   0.4304
## 
## $est_fs
##                             Coef      SE p.value     SE.b   CI.b2.5% CI.b97.5%
## lmeanMINUSi_adminpc_l6   27.1296 12.2417  0.0267  18.6344   -10.0850   62.2324
## lmeanMINUSi_adminpc2_l6 -13.3452  4.9245  0.0067   6.4867   -27.0415   -2.7576
## herf                      3.5973  4.6318  0.4374 395.0228 -1589.4299   55.2741
## herf2                    -2.4844  3.1500  0.4303 203.7168   -38.7323  814.0532
## llength                   0.0536  0.0526  0.3084   0.9145    -0.7056    2.7511
## llength2                  0.0002  0.0039  0.9671   0.0341    -0.0996    0.0306
##                         p.value.b
## lmeanMINUSi_adminpc_l6     0.1268
## lmeanMINUSi_adminpc2_l6    0.0146
## herf                       0.9958
## herf2                      0.9813
## llength                    0.4906
## llength2                   0.8857
## 
## $p_iv
## [1] 6
## 
## $N
## [1] 518
## 
## $N_cl
## [1] 31
## 
## $df
## [1] 476
## 
## $nvalues
##      ServicesCA ladminpc_l5 lmeanMINUSi_adminpc_l6 lmeanMINUSi_adminpc2_l6 herf
## [1,]        518         518                    518                     518   15
##      herf2 llength llength2
## [1,]    15      29       29
## 
## attr(,"class")
## [1] "ivDiag"
plot_coef(g)

Hager, Krakowski, and Schaub (2019)

Replication Summary
Unit of analysis individual
Treatment ethnic riots (destruction)
Instrument distance to the nearest location where armored military vehicles were stolen
Outcome prosocial behavior
Model Figure6
df <- readRDS("apsr_Hager_etal_2019.rds")
D <-"affected"
Y <- "pd_in_scale"
Z <-  "apc_min_distance"
controls <- NULL
cl <- NULL
FE <- NULL
weights<-NULL
(g<-ivDiag(data=df, Y=Y, D=D, Z=Z, controls=controls, FE =FE, 
  cl =cl,weights=weights, cores = cores))
## $est_ols
##             Coef     SE       t CI 2.5% CI 97.5% p.value
## Analytic -0.2335 0.0675 -3.4582 -0.3658  -0.1011   5e-04
## Boot.c   -0.2335 0.0695 -3.3597 -0.3752  -0.1006   0e+00
## Boot.t   -0.2335 0.0675 -3.4582 -0.3712  -0.0958   0e+00
## 
## $est_2sls
##           Coef     SE       t CI 2.5% CI 97.5% p.value
## Analytic -0.52 0.1416 -3.6733 -0.7975  -0.2425   2e-04
## Boot.c   -0.52 0.1415 -3.6754 -0.8106  -0.2517   0e+00
## Boot.t   -0.52 0.1416 -3.6733 -0.7989  -0.2411   0e+00
## 
## $AR
## $AR$Fstat
##        F      df1      df2        p 
##  13.7909   1.0000 876.0000   0.0002 
## 
## $AR$ci.print
## [1] "[-0.8003, -0.2454]"
## 
## $AR$ci
## [1] -0.8003 -0.2454
## 
## $AR$bounded
## [1] TRUE
## 
## 
## $F_stat
##  F.standard    F.robust   F.cluster F.bootstrap F.effective 
##    271.8565    637.5699          NA    597.2178    637.5699 
## 
## $rho
## [1] 0.4867
## 
## $tF
##        F       cF     Coef       SE        t   CI2.5%  CI97.5%  p-value 
## 637.5699   1.9600  -0.5200   0.1416  -3.6733  -0.7975  -0.2425   0.0002 
## 
## $est_rf
##                    Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## apc_min_distance 0.1011 0.0272   2e-04 0.0273   0.0473     0.155         0
## 
## $est_fs
##                     Coef     SE p.value  SE.b CI.b2.5% CI.b97.5% p.value.b
## apc_min_distance -0.1943 0.0077       0 0.008  -0.2089   -0.1784         0
## 
## $p_iv
## [1] 1
## 
## $N
## [1] 878
## 
## $N_cl
## NULL
## 
## $df
## [1] 876
## 
## $nvalues
##      pd_in_scale affected apc_min_distance
## [1,]           2        2              193
## 
## attr(,"class")
## [1] "ivDiag"
plot_coef(g)

Hager and Krakowski (2022)

Replication Summary
Unit of analysis individual
Treatment number of secret police officers
Instrument number of corrupted Catholic priests
Outcome resistance
Model Table3(2)
df <- readRDS("apsr_Hager_Krakowski_2022.rds")

D <-"commanders"
Y <- "y"
Z <-  "priests_continuous"
controls <- NULL
cl <- NULL
FE <- NULL
weights<-NULL
(g<-ivDiag(data=df, Y=Y, D=D, Z=Z, controls=controls, FE =FE, 
  cl =cl,weights=weights, cores = cores))
## $est_ols
##            Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 0.1494 0.0751 1.9891  0.0022   0.2965  0.0467
## Boot.c   0.1494 0.3265 0.4575  0.0592   1.4560  0.0000
## Boot.t   0.1494 0.0751 1.9891 -5.6458   5.9445  0.5040
## 
## $est_2sls
##            Coef      SE      t CI 2.5% CI 97.5% p.value
## Analytic 0.1765  0.0952 1.8537 -0.0101   0.3632  0.0638
## Boot.c   0.1765 15.3652 0.0115  0.0821   6.3569  0.0060
## Boot.t   0.1765  0.0952 1.8537 -0.2832   0.6362  0.3530
## 
## $AR
## $AR$Fstat
##        F      df1      df2        p 
##   8.7245   1.0000 295.0000   0.0034 
## 
## $AR$ci.print
## [1] "[0.0642, Inf)"
## 
## $AR$ci
## [1] 0.0642    Inf
## 
## $AR$bounded
## [1] FALSE
## 
## 
## $F_stat
##  F.standard    F.robust   F.cluster F.bootstrap F.effective 
##    109.0543      3.1403          NA      3.4147      3.1403 
## 
## $rho
## [1] 0.5195
## 
## $tF
##       F      cF    Coef      SE       t  CI2.5% CI97.5% p-value 
##  3.1403 18.6600  0.1765  0.0952  1.8537 -1.6005  1.9535  0.8456 
## 
## $est_rf
##                      Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## priests_continuous 0.4736 0.1603  0.0031 0.1699   0.1848    0.8396         0
## 
## $est_fs
##                      Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## priests_continuous 2.6827 1.5139  0.0764 1.4518   0.0294    5.1581     0.006
## 
## $p_iv
## [1] 1
## 
## $N
## [1] 297
## 
## $N_cl
## NULL
## 
## $df
## [1] 295
## 
## $nvalues
##       y commanders priests_continuous
## [1,] 14         12                  7
## 
## attr(,"class")
## [1] "ivDiag"
plot_coef(g)

Hager and Hilbig (2019) a

Replication Summary
Unit of analysis city
Treatment equiTable inheritance customs
Instrument mean elevation
Outcome female representation
Model Table3(1)
df<-readRDS("ajps_Hager_etal_2019.rds")
D <-"fair_dic"
Y <- "gem_women_share"
Z <- "elev_mean"
controls <- c("lon", "lat", "childlabor_mean_1898",
              "support_expenses_total_capita","gem_council",
              "gem_pop_density","pop_tot")
cl<- NULL
FE<- c("state2","law_cat2")
weights<-NULL
(g<-ivDiag(data=df, Y=Y, D=D, Z=Z, controls=controls, FE =FE, 
  cl =cl,weights=weights, cores = cores))
## $est_ols
##            Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 0.0072 0.0042 1.7010 -0.0011   0.0155  0.0889
## Boot.c   0.0072 0.0041 1.7421 -0.0009   0.0148  0.0920
## Boot.t   0.0072 0.0042 1.7010 -0.0008   0.0152  0.0830
## 
## $est_2sls
##            Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 0.1363 0.0262 5.1939  0.0849   0.1878       0
## Boot.c   0.1363 0.0272 5.0100  0.0877   0.1960       0
## Boot.t   0.1363 0.0262 5.1939  0.0852   0.1875       0
## 
## $AR
## $AR$Fstat
##         F       df1       df2         p 
##   38.9099    1.0000 3848.0000    0.0000 
## 
## $AR$ci.print
## [1] "[0.0901, 0.1957]"
## 
## $AR$ci
## [1] 0.0901 0.1957
## 
## $AR$bounded
## [1] TRUE
## 
## 
## $F_stat
##  F.standard    F.robust   F.cluster F.bootstrap F.effective 
##    122.1930     79.2985          NA     81.1246     79.2985 
## 
## $rho
## [1] 0.1758
## 
## $tF
##       F      cF    Coef      SE       t  CI2.5% CI97.5% p-value 
## 79.2985  2.0200  0.1363  0.0262  5.1939  0.0833  0.1894  0.0000 
## 
## $est_rf
##             Coef SE p.value SE.b CI.b2.5% CI.b97.5% p.value.b
## elev_mean -1e-04  0       0    0   -2e-04    -1e-04         0
## 
## $est_fs
##             Coef    SE p.value  SE.b CI.b2.5% CI.b97.5% p.value.b
## elev_mean -9e-04 1e-04       0 1e-04  -0.0011    -7e-04         0
## 
## $p_iv
## [1] 1
## 
## $N
## [1] 3850
## 
## $N_cl
## NULL
## 
## $df
## [1] 3831
## 
## $nvalues
##      gem_women_share fair_dic elev_mean
## [1,]             230        2      3850
## 
## attr(,"class")
## [1] "ivDiag"
plot_coef(g)

Hager and Hilbig (2019) b

Replication Summary
Unit of analysis city
Treatment equiTable inheritance customs
Instrument distance to rivers
Outcome female representation
Model Table3(2)
df<-readRDS("ajps_Hager_etal_2019.rds")
D <-"fair_dic"
Y <- "gem_women_share"
Z <-"river_dist_min"
controls <- c("lon", "lat", "childlabor_mean_1898",
              "support_expenses_total_capita","gem_council",
              "gem_pop_density","pop_tot")
cl<- NULL
FE<- c("law_cat2")
weights<-NULL
(g<-ivDiag(data=df, Y=Y, D=D, Z=Z, controls=controls, FE =FE, 
  cl =cl,weights=weights, cores = cores))
## $est_ols
##           Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 0.015 0.0073 2.0379   6e-04   0.0293  0.0416
## Boot.c   0.015 0.0073 2.0489  -2e-04   0.0291  0.0540
## Boot.t   0.015 0.0073 2.0379   5e-04   0.0294  0.0420
## 
## $est_2sls
##            Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 0.0513 0.0239 2.1441  0.0044   0.0982   0.032
## Boot.c   0.0513 0.0239 2.1429  0.0092   0.1030   0.014
## Boot.t   0.0513 0.0239 2.1441  0.0062   0.0964   0.024
## 
## $AR
## $AR$Fstat
##        F      df1      df2        p 
##   4.8070   1.0000 864.0000   0.0286 
## 
## $AR$ci.print
## [1] "[0.0058, 0.1006]"
## 
## $AR$ci
## [1] 0.0058 0.1006
## 
## $AR$bounded
## [1] TRUE
## 
## 
## $F_stat
##  F.standard    F.robust   F.cluster F.bootstrap F.effective 
##     99.1676    100.3609          NA     94.6029    100.3609 
## 
## $rho
## [1] 0.3222
## 
## $tF
##        F       cF     Coef       SE        t   CI2.5%  CI97.5%  p-value 
## 100.3609   1.9700   0.0513   0.0239   2.1441   0.0042   0.0985   0.0329 
## 
## $est_rf
##                  Coef    SE p.value  SE.b CI.b2.5% CI.b97.5% p.value.b
## river_dist_min -5e-04 2e-04  0.0291 2e-04   -0.001    -1e-04     0.014
## 
## $est_fs
##                   Coef    SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## river_dist_min -0.0105 0.001       0 0.0011  -0.0127   -0.0085         0
## 
## $p_iv
## [1] 1
## 
## $N
## [1] 866
## 
## $N_cl
## NULL
## 
## $df
## [1] 856
## 
## $nvalues
##      gem_women_share fair_dic river_dist_min
## [1,]             110        2            866
## 
## attr(,"class")
## [1] "ivDiag"
plot_coef(g)

Healy and Malhotra (2013)

Replication Summary
Unit of analysis individual
Treatment the share of a respondent’s siblings who are female
Instrument whether the younger sibling is a sister
Outcome gender-role attitude in 1973
Model Table1(1)
df <- readRDS("jop_Healy_etal_2013.rds")
D <-"share_sis"
Y <- "womens_rights73"
Z <- "closest"
controls <- "num_sib"
cl <- "PSU"
FE <- NULL
weights<-NULL
(g<-ivDiag(data=df, Y=Y, D=D, Z=Z, controls=controls, FE =FE, 
  cl =cl,weights=weights, cores = cores))
## $est_ols
##            Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 0.0451 0.0516 0.8743 -0.0561   0.1463  0.3819
## Boot.c   0.0451 0.0516 0.8749 -0.0580   0.1370  0.4020
## Boot.t   0.0451 0.0516 0.8743 -0.0287   0.1190  0.2430
## 
## $est_2sls
##            Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 0.1706 0.0844 2.0203  0.0051   0.3360  0.0434
## Boot.c   0.1706 0.0868 1.9652  0.0026   0.3496  0.0480
## Boot.t   0.1706 0.0844 2.0203  0.0498   0.2913  0.0090
## 
## $AR
## $AR$Fstat
##        F      df1      df2        p 
##   4.1446   1.0000 277.0000   0.0427 
## 
## $AR$ci.print
## [1] "[0.0068, 0.3394]"
## 
## $AR$ci
## [1] 0.0068 0.3394
## 
## $AR$bounded
## [1] TRUE
## 
## 
## $F_stat
##  F.standard    F.robust   F.cluster F.bootstrap F.effective 
##    255.3329    252.1198    244.4704    246.3111    244.4704 
## 
## $rho
## [1] 0.6932
## 
## $tF
##        F       cF     Coef       SE        t   CI2.5%  CI97.5%  p-value 
## 244.4704   1.9600   0.1706   0.0844   2.0203   0.0051   0.3360   0.0434 
## 
## $est_rf
##           Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## closest 0.0832 0.0409  0.0421 0.0415   0.0013    0.1647     0.048
## 
## $est_fs
##           Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## closest 0.4876 0.0312       0 0.0311    0.421    0.5462         0
## 
## $p_iv
## [1] 1
## 
## $N
## [1] 279
## 
## $N_cl
## [1] 89
## 
## $df
## [1] 276
## 
## $nvalues
##      womens_rights73 share_sis closest
## [1,]               7        17       2
## 
## attr(,"class")
## [1] "ivDiag"
plot_coef(g)

Henderson and Brooks (2016) (a)

Replication Summary
Unit of analysis district*year
Treatment Democratic vote margins
Instrument rain around election day
Outcome incumbent roll call positioning
Model Table3(1)
df<- readRDS("jop_Henderson_etal_2016.rds")
df$fe_id_num<-df$`as.factor(fe_id_num)`
D <- "dose"
Y <- "vote"
Z <- c("rain_day", "rain_day_prev")
controls <- c("d_inc", "dist_prev", "midterm", "pres_party", "black", 
              "construction", "educ", "minc", "farmer", "forborn", 
              "gvtwkr", "manuf", "pop", "unempld", "urban", "retail", 
              "sos", "gov", "comp_cq", "redistricted", "dose_prv", "vote_prv")
cl <- "fe_id_num" # incumbent
FE <- "fe_id_num"
weights<-NULL
(g<-ivDiag(data=df, Y=Y, D=D, Z=Z, controls=controls, FE =FE, 
  cl =cl,weights=weights, cores = cores))
## $est_ols
##            Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 0.0124 0.0415 0.2996 -0.0689   0.0937  0.7645
## Boot.c   0.0124 0.0535 0.2321  0.0273   0.2356  0.0120
## Boot.t   0.0124 0.0415 0.2996 -0.1048   0.1297  0.9650
## 
## $est_2sls
##             Coef     SE       t CI 2.5% CI 97.5% p.value
## Analytic -1.2984 0.4571 -2.8403 -2.1943  -0.4024  0.0045
## Boot.c   -1.2984 1.9253 -0.6744 -5.2632   0.5080  0.1380
## Boot.t   -1.2984 0.4571 -2.8403 -1.9436  -0.6531  0.0000
## 
## $AR
## $AR$Fstat
##         F       df1       df2         p 
##    6.2335    2.0000 6234.0000    0.0020 
## 
## $AR$ci.print
## [1] "[-2.1943, -0.5578]"
## 
## $AR$ci
## [1] -2.1943 -0.5578
## 
## $AR$bounded
## [1] TRUE
## 
## 
## $F_stat
##  F.standard    F.robust   F.cluster F.bootstrap F.effective 
##     26.4294     21.5068     22.8295     11.2923     26.9117 
## 
## $rho
## [1] 0.1066
## 
## $est_rf
##                 Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## rain_day      0.0326 0.0100  0.0011 0.0109   0.0172    0.0589     0.000
## rain_day_prev 0.0153 0.0081  0.0585 0.0126  -0.0242    0.0226     0.926
## 
## $est_fs
##                  Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## rain_day      -0.0144 0.0031       0 0.0043  -0.0198   -0.0028      0.01
## rain_day_prev -0.0187 0.0031       0 0.0045  -0.0191   -0.0016      0.02
## 
## $p_iv
## [1] 2
## 
## $N
## [1] 6237
## 
## $N_cl
## [1] 1610
## 
## $df
## [1] 1609
## 
## $nvalues
##      vote dose rain_day rain_day_prev
## [1,] 6230 5138     5321          5326
## 
## attr(,"class")
## [1] "ivDiag"
plot_coef(g)

Henderson and Brooks (2016) (b)

Replication Summary
Unit of analysis district*year
Treatment Democratic vote margins
Instrument rain around election weekend
Outcome incumbent roll call positioning
Model Table3(2)
df<- readRDS("jop_Henderson_etal_2016.rds")
df$fe_id_num<-df$`as.factor(fe_id_num)`
D <- "dose"
Y <- "vote"
Z <- c("rain_weekend", "rain_weekend_prev")
controls <- c("d_inc", "dist_prev", "midterm", "pres_party", "black", 
              "construction", "educ", "minc", "farmer", "forborn", 
              "gvtwkr", "manuf", "pop", "unempld", "urban", "retail", 
              "sos", "gov", "comp_cq", "redistricted", "dose_prv", "vote_prv")
cl <- "fe_id_num" # incumbent
FE <- "fe_id_num"
weights<-NULL
(g<-ivDiag(data=df, Y=Y, D=D, Z=Z, controls=controls, FE =FE, 
  cl =cl,weights=weights, cores = cores))
## $est_ols
##            Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 0.0124 0.0415 0.2996 -0.0689   0.0937  0.7645
## Boot.c   0.0124 0.0538 0.2312  0.0135   0.2296  0.0240
## Boot.t   0.0124 0.0415 0.2996 -0.1015   0.1263  0.9560
## 
## $est_2sls
##             Coef     SE       t CI 2.5% CI 97.5% p.value
## Analytic -1.1444 0.4293 -2.6654 -1.9859  -0.3029  0.0077
## Boot.c   -1.1444 1.0722 -1.0673 -3.1494   0.5820  0.2260
## Boot.t   -1.1444 0.4293 -2.6654 -1.8638  -0.4249  0.0000
## 
## $AR
## $AR$Fstat
##         F       df1       df2         p 
##    4.7151    2.0000 6234.0000    0.0090 
## 
## $AR$ci.print
## [1] "[-2.2864, -0.2685]"
## 
## $AR$ci
## [1] -2.2864 -0.2685
## 
## $AR$bounded
## [1] TRUE
## 
## 
## $F_stat
##  F.standard    F.robust   F.cluster F.bootstrap F.effective 
##     30.3614     24.5741     26.3171     13.9611     30.9359 
## 
## $rho
## [1] 0.1141
## 
## $est_rf
##                     Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## rain_weekend      0.0306 0.0109  0.0050 0.0115   0.0084    0.0520     0.006
## rain_weekend_prev 0.0175 0.0095  0.0665 0.0147  -0.0315    0.0258     0.864
## 
## $est_fs
##                      Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## rain_weekend      -0.0192 0.0034       0 0.0049  -0.0250   -0.0064     0.004
## rain_weekend_prev -0.0213 0.0035       0 0.0047  -0.0229   -0.0045     0.006
## 
## $p_iv
## [1] 2
## 
## $N
## [1] 6237
## 
## $N_cl
## [1] 1610
## 
## $df
## [1] 1609
## 
## $nvalues
##      vote dose rain_weekend rain_weekend_prev
## [1,] 6230 5138         5401              5407
## 
## attr(,"class")
## [1] "ivDiag"
plot_coef(g)

Hong, Park, and Yang (2022)

Replication Summary
Unit of analysis township
Treatment NVM subsidy per voter
Instrument Terrain elevation slope
Outcome Park’s vote share in 2012
Model Table3(3)
df <-readRDS("ajps_Hong_etal_2022.rds")
df<-as.data.frame(df)
D<-"total_Lamount_1974_1978_perelect" 
Y <- "E18ConsSh"
Z <- c("te_median1", "ts_median1")
controls <- c("area_1970","demo_female_share_1966","demo_age_15plus_1966",
              "demo_illiterate_1966","demo_pop_ch_1970_1966","E17ConsSh","eup")
cl <- "CTY_cd"
FE <- "CTY_cd"
weights<-NULL
(g<-ivDiag(data=df, Y=Y, D=D, Z=Z, controls=controls, FE =FE, 
  cl =cl,weights=weights, cores = cores))
## $est_ols
##            Coef     SE     t CI 2.5% CI 97.5% p.value
## Analytic 0.0151 0.0074 2.060  0.0007   0.0296  0.0394
## Boot.c   0.0151 0.0072 2.113  0.0007   0.0283  0.0420
## Boot.t   0.0151 0.0074 2.060  0.0048   0.0255  0.0080
## 
## $est_2sls
##            Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 0.0602 0.0262 2.2980  0.0089   0.1116  0.0216
## Boot.c   0.0602 0.0268 2.2435  0.0090   0.1133  0.0100
## Boot.t   0.0602 0.0262 2.2980  0.0227   0.0977  0.0020
## 
## $AR
## $AR$Fstat
##         F       df1       df2         p 
##    3.2888    2.0000 1297.0000    0.0376 
## 
## $AR$ci.print
## [1] "[0.0036, 0.1247]"
## 
## $AR$ci
## [1] 0.0036 0.1247
## 
## $AR$bounded
## [1] TRUE
## 
## 
## $F_stat
##  F.standard    F.robust   F.cluster F.bootstrap F.effective 
##     34.7064     29.0832     28.2296     27.0758     28.8604 
## 
## $rho
## [1] 0.2376
## 
## $est_rf
##               Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## te_median1 -0.0036 0.0233  0.8774 0.0231  -0.0518    0.0400     0.784
## ts_median1  0.0020 0.0010  0.0509 0.0010   0.0001    0.0041     0.038
## 
## $est_fs
##              Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## te_median1 0.3276 0.1352  0.0154 0.1335   0.0814    0.5902         0
## ts_median1 0.0171 0.0061  0.0050 0.0059   0.0054    0.0280         0
## 
## $p_iv
## [1] 2
## 
## $N
## [1] 1300
## 
## $N_cl
## [1] 131
## 
## $df
## [1] 130
## 
## $nvalues
##      E18ConsSh total_Lamount_1974_1978_perelect te_median1 ts_median1
## [1,]      1292                             1285       1300       1232
## 
## attr(,"class")
## [1] "ivDiag"
plot_coef(g)

Johns and Pelc (2016)

Replication Summary
Unit of analysis WTO dispute
Treatment the number third parties
Instrument trade stake of the rest of the world
Outcome becoming a third party
Model Table2(2)
df<-readRDS("jop_Johns_etal_2016.rds")
D='third_num_excl'
Y='thirdparty'
Z='ln_ROW_before_disp'
controls=c("ln_gdpk_partner", "ln_history_third", "ln_history_C",
    "Multilateral", "trade_before_dispute",  "ARTICLEXXII")
cl <- NULL
FE <- NULL
weights<-NULL
(g<-ivDiag(data=df, Y=Y, D=D, Z=Z, controls=controls, FE =FE, 
  cl =cl,weights=weights, cores = cores))
## $est_ols
##           Coef     SE       t CI 2.5% CI 97.5% p.value
## Analytic 0.019 0.0017 11.3469  0.0157   0.0223       0
## Boot.c   0.019 0.0017 10.9721  0.0157   0.0224       0
## Boot.t   0.019 0.0017 11.3469  0.0156   0.0224       0
## 
## $est_2sls
##             Coef     SE       t CI 2.5% CI 97.5% p.value
## Analytic -0.0809 0.0297 -2.7247 -0.1392  -0.0227  0.0064
## Boot.c   -0.0809 0.0409 -1.9791 -0.1931  -0.0366  0.0000
## Boot.t   -0.0809 0.0297 -2.7247 -0.1420  -0.0199  0.0260
## 
## $AR
## $AR$Fstat
##         F       df1       df2         p 
##   19.7186    1.0000 2460.0000    0.0000 
## 
## $AR$ci.print
## [1] "[-0.1792, -0.0376]"
## 
## $AR$ci
## [1] -0.1792 -0.0376
## 
## $AR$bounded
## [1] TRUE
## 
## 
## $F_stat
##  F.standard    F.robust   F.cluster F.bootstrap F.effective 
##     16.9224     18.1200          NA     16.9788     18.1200 
## 
## $rho
## [1] 0.0828
## 
## $tF
##       F      cF    Coef      SE       t  CI2.5% CI97.5% p-value 
## 18.1200  2.6873 -0.0809  0.0297 -2.7247 -0.1608 -0.0011  0.0469 
## 
## $est_rf
##                       Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## ln_ROW_before_disp -0.0137 0.0031       0 0.0032  -0.0202   -0.0075         0
## 
## $est_fs
##                      Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## ln_ROW_before_disp 0.1692 0.0397       0 0.0411   0.0833    0.2467         0
## 
## $p_iv
## [1] 1
## 
## $N
## [1] 2462
## 
## $N_cl
## NULL
## 
## $df
## [1] 2454
## 
## $nvalues
##      thirdparty third_num_excl ln_ROW_before_disp
## [1,]          2             17               2281
## 
## attr(,"class")
## [1] "ivDiag"
plot_coef(g)

Kapoor and Magesan (2018)

Replication Summary
Unit of analysis constituency*election
Treatment number of independent candidates
Instrument changes in entry costs
Outcome voter turnout
Model Table4(b5)
df<-readRDS("apsr_Kapoor_etal_2018.rds")
D <-'CitCand'
Y <- "Turnout"
Z <- "UnScheduledDepChange"
controls <- c("CitCandBaseTrend", "CitCandBaseTrendSq", "CitCandBaseTrendCu",
              "CitCandBaseTrendQu",  "TurnoutBaseTrend", "TurnoutBaseTrendSq",
              "TurnoutBaseTrendCu", "TurnoutBaseTrendQu", "LnElectors",
              "LagWinDist", "LagWinDistSq", "LagWinDistCu",
              "LagWinDistQu", "LagTightElection")
cl<- "constituency"
FE <- c("year","constituency")
weights<-NULL
(g<-ivDiag(data=df, Y=Y, D=D, Z=Z, controls=controls, FE =FE, 
  cl =cl,weights=weights, cores = cores))
## $est_ols
##             Coef     SE       t CI 2.5% CI 97.5% p.value
## Analytic -0.0256 0.0110 -2.3216 -0.0472  -0.0040  0.0203
## Boot.c   -0.0256 0.0209 -1.2233 -0.0945  -0.0133  0.0000
## Boot.t   -0.0256 0.0110 -2.3216 -0.0530   0.0018  0.0670
## 
## $est_2sls
##            Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 0.4864 0.2256 2.1562  0.0443   0.9285  0.0311
## Boot.c   0.4864 0.2470 1.9696  0.1351   1.0867  0.0060
## Boot.t   0.4864 0.2256 2.1562  0.1763   0.7965  0.0080
## 
## $AR
## $AR$Fstat
##         F       df1       df2         p 
##    7.7339    1.0000 4295.0000    0.0054 
## 
## $AR$ci.print
## [1] "[0.1300, 1.1631]"
## 
## $AR$ci
## [1] 0.1300 1.1631
## 
## $AR$bounded
## [1] TRUE
## 
## 
## $F_stat
##  F.standard    F.robust   F.cluster F.bootstrap F.effective 
##     11.2301     23.7168     19.1635     20.1342     19.1635 
## 
## $rho
## [1] 0.0548
## 
## $tF
##       F      cF    Coef      SE       t  CI2.5% CI97.5% p-value 
## 19.1635  2.6390  0.4864  0.2256  2.1562 -0.1089  1.0817  0.1093 
## 
## $est_rf
##                        Coef   SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## UnScheduledDepChange -1.277 0.46  0.0055 0.4462  -2.1247   -0.3844     0.006
## 
## $est_fs
##                         Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## UnScheduledDepChange -2.6256 0.5998       0 0.5851  -3.9638   -1.5455         0
## 
## $p_iv
## [1] 1
## 
## $N
## [1] 4297
## 
## $N_cl
## [1] 543
## 
## $df
## [1] 542
## 
## $nvalues
##      Turnout CitCand UnScheduledDepChange
## [1,]    4293      68                    2
## 
## attr(,"class")
## [1] "ivDiag"
plot_coef(g)

Kim (2019)

Replication Summary
Unit of analysis municipality*year
Treatment Democratic institutions
Instrument population threshold
Outcome women political engagement
Model Table2(1)
df<- readRDS("ajps_Kim_2019.rds")
D <-"direct"
Y <- "wm_turnout"
Z <-  "new"
controls <- c("left", "wm_voters", "enep")
cl <- NULL
FE <- "year"
weights<-NULL
(g<-ivDiag(data=df, Y=Y, D=D, Z=Z, controls=controls, FE =FE, 
  cl =cl,weights=weights, cores = cores))
## $est_ols
##           Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 0.017 0.4897 0.0346 -0.9429   0.9768  0.9724
## Boot.c   0.017 0.5117 0.0331 -0.9935   1.0267  0.9140
## Boot.t   0.017 0.4897 0.0346 -0.9991   1.0330  0.9700
## 
## $est_2sls
##            Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 3.9287 1.0855 3.6192  1.8011   6.0563   3e-04
## Boot.c   3.9287 1.1275 3.4844  2.0640   6.4966   0e+00
## Boot.t   3.9287 1.0855 3.6192  1.7047   6.1526   1e-03
## 
## $AR
## $AR$Fstat
##         F       df1       df2         p 
##   14.3152    1.0000 2747.0000    0.0002 
## 
## $AR$ci.print
## [1] "[1.8662, 6.0997]"
## 
## $AR$ci
## [1] 1.8662 6.0997
## 
## $AR$bounded
## [1] TRUE
## 
## 
## $F_stat
##  F.standard    F.robust   F.cluster F.bootstrap F.effective 
##   1007.3382    914.6461          NA    890.5081    914.6461 
## 
## $rho
## [1] 0.5186
## 
## $tF
##        F       cF     Coef       SE        t   CI2.5%  CI97.5%  p-value 
## 914.6461   1.9600   3.9287   1.0855   3.6192   1.8011   6.0563   0.0003 
## 
## $est_rf
##      Coef    SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## new 1.949 0.516   2e-04 0.5309   1.0234    3.0757         0
## 
## $est_fs
##       Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## new 0.4961 0.0164       0 0.0166   0.4596    0.5245         0
## 
## $p_iv
## [1] 1
## 
## $N
## [1] 2749
## 
## $N_cl
## NULL
## 
## $df
## [1] 2738
## 
## $nvalues
##      wm_turnout direct new
## [1,]       2606      2   2
## 
## attr(,"class")
## [1] "ivDiag"
plot_coef(g)

Kocher, Pepinsky, and Kalyvas (2011)

Replication Summary
Unit of analysis hamlet (smallest population unit)
Treatment aerial bombing
Instrument past insurgent control
Outcome changes in local control
Model Table5(5B)
df<-readRDS("ajps_Kocher_etal_2011.rds")
D <-"bombed_969"
Y<- "mod2a_1adec"
Z <- c("mod2a_1ajul", "mod2a_1aaug")
controls <- c("mod2a_1asep", "score", "ln_dist", "std", "lnhpop")
cl<- NULL
FE <-NULL
weights<-NULL
(g<-ivDiag(data=df, Y=Y, D=D, Z=Z, controls=controls, FE =FE, 
  cl =cl,weights=weights, cores = cores))
## $est_ols
##            Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 0.0249 0.0042 5.8926  0.0166   0.0332       0
## Boot.c   0.0249 0.0044 5.6972  0.0178   0.0345       0
## Boot.t   0.0249 0.0042 5.8926  0.0167   0.0331       0
## 
## $est_2sls
##           Coef     SE       t CI 2.5% CI 97.5% p.value
## Analytic 1.464 0.1377 10.6345  1.1942   1.7339       0
## Boot.c   1.464 0.1427 10.2589  1.2057   1.7735       0
## Boot.t   1.464 0.1377 10.6345  1.1913   1.7368       0
## 
## $AR
## $AR$Fstat
##         F       df1       df2         p 
##  681.5407    2.0000 9704.0000    0.0000 
## 
## $AR$ci.print
## [1] "[1.1914, 1.8908]"
## 
## $AR$ci
## [1] 1.1914 1.8908
## 
## $AR$bounded
## [1] TRUE
## 
## 
## $F_stat
##  F.standard    F.robust   F.cluster F.bootstrap F.effective 
##     44.1703     59.8861          NA     57.1802    112.1923 
## 
## $rho
## [1] 0.095
## 
## $est_rf
##               Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## mod2a_1ajul 0.2562 0.0123       0 0.0117   0.2332    0.2803         0
## mod2a_1aaug 0.1830 0.0134       0 0.0134   0.1583    0.2097         0
## 
## $est_fs
##               Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## mod2a_1ajul 0.1681 0.0284       0 0.0288   0.1144    0.2242         0
## mod2a_1aaug 0.1328 0.0311       0 0.0315   0.0709    0.1909         0
## 
## $p_iv
## [1] 2
## 
## $N
## [1] 9707
## 
## $N_cl
## NULL
## 
## $df
## [1] 9700
## 
## $nvalues
##      mod2a_1adec bombed_969 mod2a_1ajul mod2a_1aaug
## [1,]           5         35           5           5
## 
## attr(,"class")
## [1] "ivDiag"
plot_coef(g)

Kriner and Schickler (2014)

Replication Summary
Unit of analysis month
Treatment committee investigations
Instrument number of days that Congress was in session in a given month
Outcome presidential approval
Model Table1(1)
df<-readRDS("jop_Kriner_etal_2014.rds")
D <- "misconductdays"
Y <- "approval"
Z <- "alldaysinsession"
controls <- c("icst1", "positive", "negative", "vcaslast6mos",
              "iraqcaslast6mos", "honeymoon", "approvalt1", "ike","jfk",
              "lbj","rmn","ford","carter","reagan","bush","clinton","wbush")
cl <- NULL
FE <- NULL
weights<-NULL
(g<-ivDiag(data=df, Y=Y, D=D, Z=Z, controls=controls, FE =FE, 
  cl =cl,weights=weights, cores = cores))
## $est_ols
##             Coef     SE       t CI 2.5% CI 97.5% p.value
## Analytic -0.0314 0.0149 -2.1103 -0.0606  -0.0022  0.0348
## Boot.c   -0.0314 0.0151 -2.0863 -0.0606  -0.0022  0.0400
## Boot.t   -0.0314 0.0149 -2.1103 -0.0607  -0.0021  0.0370
## 
## $est_2sls
##             Coef     SE       t CI 2.5% CI 97.5% p.value
## Analytic -0.1262 0.0449 -2.8096 -0.2142  -0.0382   0.005
## Boot.c   -0.1262 0.0451 -2.7954 -0.2154  -0.0366   0.004
## Boot.t   -0.1262 0.0449 -2.8096 -0.2110  -0.0414   0.002
## 
## $AR
## $AR$Fstat
##        F      df1      df2        p 
##   8.9171   1.0000 634.0000   0.0029 
## 
## $AR$ci.print
## [1] "[-0.2196, -0.0426]"
## 
## $AR$ci
## [1] -0.2196 -0.0426
## 
## $AR$bounded
## [1] TRUE
## 
## 
## $F_stat
##  F.standard    F.robust   F.cluster F.bootstrap F.effective 
##    105.5872    121.5394          NA    132.4586    121.5394 
## 
## $rho
## [1] 0.382
## 
## $tF
##        F       cF     Coef       SE        t   CI2.5%  CI97.5%  p-value 
## 121.5394   1.9600  -0.1262   0.0449  -2.8096  -0.2142  -0.0382   0.0050 
## 
## $est_rf
##                    Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## alldaysinsession -0.035 0.0119  0.0032 0.0118  -0.0562   -0.0108     0.004
## 
## $est_fs
##                    Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## alldaysinsession 0.2777 0.0252       0 0.0241   0.2283    0.3237         0
## 
## $p_iv
## [1] 1
## 
## $N
## [1] 636
## 
## $N_cl
## NULL
## 
## $df
## [1] 618
## 
## $nvalues
##      approval misconductdays alldaysinsession
## [1,]      185             52               49
## 
## attr(,"class")
## [1] "ivDiag"
plot_coef(g)

Kuipers and Sahn (2022)

Replication Summary
Unit of analysis municipality* year
Treatment civil service reform
Instrument statewide assignment mandate
Outcome descriptive representation on an unrestricted sample
Model Table1(2)
df <- readRDS("apsr_kuipers_2022.rds")
df<-df%>%filter(occ=='blue_collar' & name=='white_x_native_born')
D <-"treat_actual"
Y <- "govt"
Z <-  "treat_assign"
controls <-"pop"
cl <- NULL
FE <- c("YEAR","city")
weights<-NULL
(g<-ivDiag(data=df, Y=Y, D=D, Z=Z, controls=controls, FE =FE, 
  cl =cl,weights=weights, cores = cores))
## $est_ols
##             Coef     SE       t CI 2.5% CI 97.5% p.value
## Analytic -0.0319 0.0156 -2.0467 -0.0625  -0.0014  0.0407
## Boot.c   -0.0319 0.0174 -1.8305 -0.0688  -0.0029  0.0260
## Boot.t   -0.0319 0.0156 -2.0467 -0.0633  -0.0005  0.0460
## 
## $est_2sls
##             Coef     SE       t CI 2.5% CI 97.5% p.value
## Analytic -0.1689 0.1099 -1.5373 -0.3842   0.0464  0.1242
## Boot.c   -0.1689 0.1233 -1.3699 -0.4734   0.0311  0.0900
## Boot.t   -0.1689 0.1099 -1.5373 -0.3664   0.0286  0.0890
## 
## $AR
## $AR$Fstat
##         F       df1       df2         p 
##    3.0769    1.0000 1684.0000    0.0796 
## 
## $AR$ci.print
## [1] "[-0.3886, 0.0201]"
## 
## $AR$ci
## [1] -0.3886  0.0201
## 
## $AR$bounded
## [1] TRUE
## 
## 
## $F_stat
##  F.standard    F.robust   F.cluster F.bootstrap F.effective 
##     32.4157     27.5670          NA     23.6137     27.5670 
## 
## $rho
## [1] 0.153
## 
## $tF
##       F      cF    Coef      SE       t  CI2.5% CI97.5% p-value 
## 27.5670  2.3999 -0.1689  0.1099 -1.5373 -0.4326  0.0948  0.2093 
## 
## $est_rf
##                 Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## treat_assign -0.0254 0.0162   0.116 0.0169  -0.0621    0.0051      0.09
## 
## $est_fs
##                Coef     SE p.value  SE.b CI.b2.5% CI.b97.5% p.value.b
## treat_assign 0.1504 0.0286       0 0.031    0.091     0.214         0
## 
## $p_iv
## [1] 1
## 
## $N
## [1] 1686
## 
## $N_cl
## NULL
## 
## $df
## [1] 1352
## 
## $nvalues
##      govt treat_actual treat_assign
## [1,]  658            2            2
## 
## attr(,"class")
## [1] "ivDiag"
plot_coef(g)

Laitin and Ramachandran (2016)

Replication Summary
Unit of analysis country
Treatment language choice
Instrument geographic distance from the origins of writing
Outcome human development index
Model Table10(10)
df <-readRDS("apsr_Laitin_2016.rds")
D <-"avgdistance_delta50"
Y <- "zhdi_2010"
Z <- "DIST_BGNC"
controls <- c("cdf2003","ln_GDP_Indp", "edes1975",
              "America","xconst")
cl<- NULL
FE<- NULL
weights<-NULL
(g<-ivDiag(data=df, Y=Y, D=D, Z=Z, controls=controls, FE =FE, 
  cl =cl,weights=weights, cores = cores))
## $est_ols
##             Coef     SE       t CI 2.5% CI 97.5% p.value
## Analytic -1.3676 0.1884 -7.2594 -1.7369  -0.9984       0
## Boot.c   -1.3676 0.1913 -7.1477 -1.7156  -0.9873       0
## Boot.t   -1.3676 0.1884 -7.2594 -1.7499  -0.9854       0
## 
## $est_2sls
##             Coef     SE       t CI 2.5% CI 97.5% p.value
## Analytic -1.3815 0.2963 -4.6618 -1.9623  -0.8007       0
## Boot.c   -1.3815 0.3088 -4.4743 -2.0137  -0.7752       0
## Boot.t   -1.3815 0.2963 -4.6618 -1.9498  -0.8132       0
## 
## $AR
## $AR$Fstat
##        F      df1      df2        p 
##  11.4476   1.0000 135.0000   0.0009 
## 
## $AR$ci.print
## [1] "[-1.9505, -0.7295]"
## 
## $AR$ci
## [1] -1.9505 -0.7295
## 
## $AR$bounded
## [1] TRUE
## 
## 
## $F_stat
##  F.standard    F.robust   F.cluster F.bootstrap F.effective 
##     55.1871     32.4040          NA     32.2652     32.4040 
## 
## $rho
## [1] 0.5459
## 
## $tF
##       F      cF    Coef      SE       t  CI2.5% CI97.5% p-value 
## 32.4040  2.3208 -1.3815  0.2963 -4.6618 -2.0692 -0.6938  0.0001 
## 
## $est_rf
##             Coef SE p.value SE.b CI.b2.5% CI.b97.5% p.value.b
## DIST_BGNC -1e-04  0   9e-04    0   -2e-04         0         0
## 
## $est_fs
##            Coef SE p.value SE.b CI.b2.5% CI.b97.5% p.value.b
## DIST_BGNC 1e-04  0       0    0    1e-04     1e-04         0
## 
## $p_iv
## [1] 1
## 
## $N
## [1] 137
## 
## $N_cl
## NULL
## 
## $df
## [1] 130
## 
## $nvalues
##      zhdi_2010 avgdistance_delta50 DIST_BGNC
## [1,]       121                  93       134
## 
## attr(,"class")
## [1] "ivDiag"
plot_coef(g)

Lei and Zhou (2022)

Replication Summary
Unit of analysis city*year
Treatment subway approval
Instrument whether the city has more than 3 million residents* population size
Outcome mayor promotion
Model Table3(A)
df<-readRDS("jop_Lei_2022.rds")
Y <-'Mayor_promotion3y'
D <-'Mayor_plan'
Z <-'iv1'
controls<-c( 'Per_pop_2', 'iv1_int')
cl<-"City_Code"
FE<-c("provinceyear","City_Code")
weights<-NULL
(g<-ivDiag(data=df, Y=Y, D=D, Z=Z, controls=controls, FE =FE, 
  cl =cl,weights=weights, cores = cores))
## $est_ols
##           Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 0.276 0.1196 2.3077  0.0416   0.5104  0.0210
## Boot.c   0.276 0.2466 1.1193 -0.2498   0.6360  0.1728
## Boot.t   0.276 0.1196 2.3077 -0.3020   0.8539  0.2864
## 
## $est_2sls
##            Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 0.4776 0.0519 9.2026  0.3759   0.5793  0.0000
## Boot.c   0.4776 0.2833 1.6855 -0.4043   0.6796  0.1778
## Boot.t   0.4776 0.0519 9.2026  0.2749   0.6803  0.0000
## 
## $AR
## $AR$Fstat
##        F      df1      df2        p 
##  83.1817   1.0000 146.0000   0.0000 
## 
## $AR$ci.print
## [1] "[0.3759, 0.5793]"
## 
## $AR$ci
## [1] 0.3759 0.5793
## 
## $AR$bounded
## [1] TRUE
## 
## 
## $F_stat
##  F.standard    F.robust   F.cluster F.bootstrap F.effective 
##     53.4747   2276.8055   5359.1714    130.7435   5359.1714 
## 
## $rho
## [1] 0.7604
## 
## $tF
##         F        cF      Coef        SE         t    CI2.5%   CI97.5%   p-value 
## 5359.1714    1.9600    0.4776    0.0519    9.2026    0.3759    0.5793    0.0000 
## 
## $est_rf
##       Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## iv1 0.4833 0.0534       0 0.2964  -0.4214    0.6928    0.1778
## 
## $est_fs
##       Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## iv1 1.0119 0.0138       0 0.0885   0.9936    1.2977         0
## 
## $p_iv
## [1] 1
## 
## $N
## [1] 148
## 
## $N_cl
## [1] 45
## 
## $df
## [1] 39
## 
## $nvalues
##      Mayor_promotion3y Mayor_plan iv1
## [1,]                 2          2   2
## 
## attr(,"class")
## [1] "ivDiag"
plot_coef(g)

Lelkes, Sood, and Iyengar (2017)

Replication Summary
Unit of analysis state*year
Treatment number of broadband Internet providers
Instrument state-level ROW index
Outcome affective polarization
Model Table1(3)
df<-readRDS("ajps_Lelkes_2017.rds")
D <-"D"
Y <- "outcome"
Z <- "Total_log"
controls <- c("region", "percent_black", "percent_white", 
              "percent_male", "lowed", "unemploymentrate",
              "density", "HHINC_log")
cl<- "state"
FE <- "year"
weights=NULL
(g<-ivDiag(data=df, Y=Y, D=D, Z=Z, controls=controls, FE =FE, 
  cl =cl,weights=weights, cores = cores))
## $est_ols
##            Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 0.0041 0.0031 1.3481 -0.0019   0.0102  0.1776
## Boot.c   0.0041 0.0036 1.1659 -0.0028   0.0113  0.2660
## Boot.t   0.0041 0.0031 1.3481 -0.0011   0.0094  0.1040
## 
## $est_2sls
##            Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 0.0316 0.0141 2.2364  0.0039   0.0593  0.0253
## Boot.c   0.0316 0.8369 0.0377 -0.0037   0.1498  0.0600
## Boot.t   0.0316 0.0141 2.2364  0.0102   0.0530  0.0070
## 
## $AR
## $AR$Fstat
##           F         df1         df2           p 
##      4.6542      1.0000 114801.0000      0.0310 
## 
## $AR$ci.print
## [1] "[0.0036, 0.0731]"
## 
## $AR$ci
## [1] 0.0036 0.0731
## 
## $AR$bounded
## [1] TRUE
## 
## 
## $F_stat
##  F.standard    F.robust   F.cluster F.bootstrap F.effective 
##   9525.8467   8161.7346     11.1632      7.6611     11.1632 
## 
## $rho
## [1] 0.2768
## 
## $tF
##       F      cF    Coef      SE       t  CI2.5% CI97.5% p-value 
## 11.1632  3.2489  0.0316  0.0141  2.2364 -0.0143  0.0774  0.1773 
## 
## $est_rf
##             Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## Total_log 0.0033 0.0015   0.031 0.0018        0    0.0073     0.048
## 
## $est_fs
##             Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## Total_log 0.1042 0.0312   8e-04 0.0377   0.0157    0.1607     0.016
## 
## $p_iv
## [1] 1
## 
## $N
## [1] 114803
## 
## $N_cl
## [1] 48
## 
## $df
## [1] 114790
## 
## $nvalues
##      outcome    D Total_log
## [1,]    2423 1438        43
## 
## attr(,"class")
## [1] "ivDiag"
plot_coef(g)

Lerman, Sadin, and Trachtman (2017)

Replication Summary
Unit of analysis individual
Treatment public versus only private health insurance
Instrument born 1946 or 1947
Outcome support ACA
Model Table1(1)
df<-readRDS("jop_Lerman_2017.rds")
Y <-'suppafford'
D <-'privpubins3r'
Z <-'byr4647'
controls<-c( 'rep', 'ind', 'con', 'mod',
              'ideostrength', 'hcsocial', 'fininsur',
             'healthcaresupport', 'child18', 'male',
             'married', 'labor', 'mobility', 'homeowner', 
             'religimp','employed', 'votereg', 'vote08', 
             'black', 'hispanic2', 'military', 'educ',
              'fincome', 'newsint', 'publicemp', 'bornagain')
cl<-NULL
FE<-NULL
weights<-NULL
(g<-ivDiag(data=df, Y=Y, D=D, Z=Z, controls=controls, FE =FE, 
  cl =cl,weights=weights, cores = cores))
## $est_ols
##            Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 0.0093 0.0109 0.8542 -0.0121   0.0307   0.393
## Boot.c   0.0093 0.0106 0.8770 -0.0122   0.0301   0.378
## Boot.t   0.0093 0.0109 0.8542 -0.0120   0.0306   0.384
## 
## $est_2sls
##            Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 0.0459 0.0229 2.0095  0.0011   0.0908  0.0445
## Boot.c   0.0459 0.0234 1.9625 -0.0005   0.0903  0.0520
## Boot.t   0.0459 0.0229 2.0095  0.0003   0.0916  0.0470
## 
## $AR
## $AR$Fstat
##         F       df1       df2         p 
##    4.0770    1.0000 4387.0000    0.0435 
## 
## $AR$ci.print
## [1] "[0.0016, 0.0908]"
## 
## $AR$ci
## [1] 0.0016 0.0908
## 
## $AR$bounded
## [1] TRUE
## 
## 
## $F_stat
##  F.standard    F.robust   F.cluster F.bootstrap F.effective 
##    1272.162    1194.659          NA    1190.605    1194.659 
## 
## $rho
## [1] 0.4752
## 
## $tF
##         F        cF      Coef        SE         t    CI2.5%   CI97.5%   p-value 
## 1194.6594    1.9600    0.0459    0.0229    2.0095    0.0011    0.0908    0.0445 
## 
## $est_rf
##           Coef   SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## byr4647 0.0202 0.01  0.0441 0.0103   -2e-04    0.0398     0.052
## 
## $est_fs
##           Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## byr4647 0.4401 0.0127       0 0.0128   0.4135    0.4636         0
## 
## $p_iv
## [1] 1
## 
## $N
## [1] 4389
## 
## $N_cl
## NULL
## 
## $df
## [1] 4361
## 
## $nvalues
##      suppafford privpubins3r byr4647
## [1,]          2            2       2
## 
## attr(,"class")
## [1] "ivDiag"
plot_coef(g)

López-Moctezuma et al. (2020)

Replication Summary
Unit of analysis individual
Treatment town-hall meetings
Instrument assignment to treatment
Outcome voting behavior
Model figure3(2)
df <-readRDS("ajps_Moctezuma_etal_2020.rds")
df<-as.data.frame(df)
D<-"treatment"
Y <- "vote"
Z <- "assignment"
  controls <- NULL
cl <- "barangay"
FE <- "city"
weights<-"weight.att"
(g<-ivDiag(data=df, Y=Y, D=D, Z=Z, controls=controls, FE =FE, 
  cl =cl,weights=weights, cores = cores))
## $est_ols
##             Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 16.1643 2.5956 6.2275 11.0769  21.2517   0.000
## Boot.c   16.1643 4.3288 3.7341  7.0411  23.1538   0.006
## Boot.t   16.1643 2.5956 6.2275  2.7193  29.6092   0.043
## 
## $est_2sls
##             Coef       SE      t CI 2.5% CI 97.5% p.value
## Analytic 17.6531   3.5231 5.0106 10.7478  24.5584   0.000
## Boot.c   17.6531 200.0607 0.0882 -9.1744  74.1952   0.068
## Boot.t   17.6531   3.5231 5.0106  2.2419  33.0642   0.044
## 
## $AR
## $AR$Fstat
##        F      df1      df2        p 
##  18.6344   1.0000 888.0000   0.0000 
## 
## $AR$ci.print
## [1] "[11.1705, 26.1790]"
## 
## $AR$ci
## [1] 11.1705 26.1790
## 
## $AR$bounded
## [1] TRUE
## 
## 
## $F_stat
##  F.standard    F.robust   F.cluster F.bootstrap F.effective 
##   1663.9064    521.4034     25.2694      5.3696     25.2694 
## 
## $rho
## [1] 0.8089
## 
## $tF
##       F      cF    Coef      SE       t  CI2.5% CI97.5% p-value 
## 25.2694  2.4519 17.6531  3.5231  5.0106  9.0146 26.2915  0.0001 
## 
## $est_rf
##               Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## assignment 13.2179 3.0776       0 6.1545   0.7769   25.4835     0.032
## 
## $est_fs
##              Coef    SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## assignment 0.7488 0.149       0 0.3231  -0.0566         1     0.072
## 
## $p_iv
## [1] 1
## 
## $N
## [1] 890
## 
## $N_cl
## [1] 30
## 
## $df
## [1] 879
## 
## $nvalues
##      vote treatment assignment
## [1,]    2         2          2
## 
## attr(,"class")
## [1] "ivDiag"
plot_coef(g)

Lorentzen, Landry, and Yasuda (2014)

Replication Summary
Unit of analysis city
Treatment large firm dominance in 2007
Instrument same variable measured in 1999
Outcome pollution information transparency index
Model Table1(2)
df<-readRDS("jop_Lorentzen_2014.rds")
D <- "lfd2007"
Y <- "pitiave3"
Z <- "lfd99"
controls <- c("lbudgetrev", "lexpratio", "tertratio", "sat_air_pca")
cl <- NULL
FE <- NULL
weights<-NULL
(g<-ivDiag(data=df, Y=Y, D=D, Z=Z, controls=controls, FE =FE, 
  cl =cl,weights=weights, cores = cores))
## $est_ols
##             Coef     SE       t CI 2.5% CI 97.5% p.value
## Analytic -2.4789 1.0508 -2.3590 -4.5385  -0.4193  0.0183
## Boot.c   -2.4789 1.0754 -2.3051 -4.5436  -0.4151  0.0160
## Boot.t   -2.4789 1.0508 -2.3590 -4.6403  -0.3175  0.0250
## 
## $est_2sls
##             Coef     SE       t  CI 2.5% CI 97.5% p.value
## Analytic -6.3664 1.6421 -3.8769  -9.5850  -3.1478   1e-04
## Boot.c   -6.3664 1.7650 -3.6070 -10.4132  -3.3455   0e+00
## Boot.t   -6.3664 1.6421 -3.8769  -9.7315  -3.0013   1e-03
## 
## $AR
## $AR$Fstat
##        F      df1      df2        p 
##  17.3155   1.0000 110.0000   0.0001 
## 
## $AR$ci.print
## [1] "[-10.0120, -3.3777]"
## 
## $AR$ci
## [1] -10.0120  -3.3777
## 
## $AR$bounded
## [1] TRUE
## 
## 
## $F_stat
##  F.standard    F.robust   F.cluster F.bootstrap F.effective 
##     53.6182     53.4100          NA     48.7676     53.4100 
## 
## $rho
## [1] 0.5796
## 
## $tF
##       F      cF    Coef      SE       t  CI2.5% CI97.5% p-value 
## 53.4100  2.1292 -6.3664  1.6421 -3.8769 -9.8628 -2.8700  0.0004 
## 
## $est_rf
##          Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## lfd99 -3.4227 0.8379       0 0.8527  -5.1186     -1.81         0
## 
## $est_fs
##         Coef     SE p.value  SE.b CI.b2.5% CI.b97.5% p.value.b
## lfd99 0.5376 0.0736       0 0.077   0.3955    0.6976         0
## 
## $p_iv
## [1] 1
## 
## $N
## [1] 112
## 
## $N_cl
## NULL
## 
## $df
## [1] 106
## 
## $nvalues
##      pitiave3 lfd2007 lfd99
## [1,]      108     112   112
## 
## attr(,"class")
## [1] "ivDiag"
plot_coef(g)

McClendon (2014)

Replication Summary
Unit of analysis individual
Treatment reading social esteem promising email
Instrument assignment to treatment
Outcome participation in LGBTQ events
Model Table2(1)
df <- readRDS("ajps_McClendon_2014.rds")
D<-"openedesteem"
Y<- "intended"
Z <- "esteem"
controls <- NULL
cl<- NULL
FE <- NULL
weights<-NULL
(g<-ivDiag(data=df, Y=Y, D=D, Z=Z, controls=controls, FE =FE, 
  cl =cl,weights=weights, cores = cores))
## $est_ols
##            Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 0.2823 0.0339 8.3291  0.2159   0.3488       0
## Boot.c   0.2823 0.0338 8.3625  0.2158   0.3444       0
## Boot.t   0.2823 0.0339 8.3291  0.2166   0.3481       0
## 
## $est_2sls
##            Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 0.3149 0.0890 3.5376  0.1404   0.4893   4e-04
## Boot.c   0.3149 0.0877 3.5918  0.1534   0.4922   0e+00
## Boot.t   0.3149 0.0890 3.5376  0.1486   0.4812   0e+00
## 
## $AR
## $AR$Fstat
##         F       df1       df2         p 
##   11.9462    1.0000 3645.0000    0.0006 
## 
## $AR$ci.print
## [1] "[0.1404, 0.4911]"
## 
## $AR$ci
## [1] 0.1404 0.4911
## 
## $AR$bounded
## [1] TRUE
## 
## 
## $F_stat
##  F.standard    F.robust   F.cluster F.bootstrap F.effective 
##    103.7604    207.1798          NA    218.3386    207.1798 
## 
## $rho
## [1] 0.1664
## 
## $tF
##        F       cF     Coef       SE        t   CI2.5%  CI97.5%  p-value 
## 207.1798   1.9600   0.3149   0.0890   3.5376   0.1404   0.4893   0.0004 
## 
## $est_rf
##          Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## esteem 0.0247 0.0072   5e-04 0.0069   0.0118    0.0377         0
## 
## $est_fs
##          Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## esteem 0.0786 0.0055       0 0.0053   0.0686    0.0894         0
## 
## $p_iv
## [1] 1
## 
## $N
## [1] 3647
## 
## $N_cl
## NULL
## 
## $df
## [1] 3645
## 
## $nvalues
##      intended openedesteem esteem
## [1,]        2            2      2
## 
## attr(,"class")
## [1] "ivDiag"
plot_coef(g)

Meredith (2013)

Replication Summary
Unit of analysis down-ballot race
Treatment Democratic governor
Instrument governor’s home county
Outcome down-ballot Democratic candidates’ vote share
Model Table3(5)
df <-readRDS("apsr_Meredith_2013.rds")
Y <- "DemShareDB_res"
D<-"DemShareGOV_res"
Z <- "HomeGOV_res"
controls <- "HomeDB_res"
cl <- "fips"
FE<- NULL
weights<-NULL
(g <- ivDiag(data=df, Y=Y, D=D, Z=Z, controls=controls, FE =FE, 
  cl =cl,weights=weights, cores = cores))
## $est_ols
##            Coef     SE       t CI 2.5% CI 97.5% p.value
## Analytic 0.2634 0.0128 20.5976  0.2383   0.2884       0
## Boot.c   0.2634 0.0128 20.5617  0.2366   0.2894       0
## Boot.t   0.2634 0.0128 20.5976  0.2448   0.2819       0
## 
## $est_2sls
##            Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 0.1634 0.0712 2.2959  0.0239   0.3030  0.0217
## Boot.c   0.1634 0.0757 2.1593  0.0038   0.3064  0.0460
## Boot.t   0.1634 0.0712 2.2959  0.0629   0.2640  0.0020
## 
## $AR
## $AR$Fstat
##          F        df1        df2          p 
##     4.6123     1.0000 14548.0000     0.0318 
## 
## $AR$ci.print
## [1] "[0.0168, 0.3015]"
## 
## $AR$ci
## [1] 0.0168 0.3015
## 
## $AR$bounded
## [1] TRUE
## 
## 
## $F_stat
##  F.standard    F.robust   F.cluster F.bootstrap F.effective 
##    284.9652    141.9189     77.2953     71.3816     77.2953 
## 
## $rho
## [1] 0.1386
## 
## $tF
##       F      cF    Coef      SE       t  CI2.5% CI97.5% p-value 
## 77.2953  2.0300  0.1634  0.0712  2.2959  0.0189  0.3079  0.0266 
## 
## $est_rf
##               Coef     SE p.value  SE.b CI.b2.5% CI.b97.5% p.value.b
## HomeGOV_res 0.0062 0.0029  0.0317 0.003    1e-04    0.0121     0.046
## 
## $est_fs
##               Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## HomeGOV_res 0.0379 0.0043       0 0.0045   0.0289    0.0464         0
## 
## $p_iv
## [1] 1
## 
## $N
## [1] 14550
## 
## $N_cl
## [1] 2750
## 
## $df
## [1] 14547
## 
## $nvalues
##      DemShareDB_res DemShareGOV_res HomeGOV_res
## [1,]          14550           14550        1466
## 
## attr(,"class")
## [1] "ivDiag"
plot_coef(g)

Nellis and Siddiqui (2018)

Replication Summary
Unit of analysis district*election
Treatment the proportion of MNA seats in a district won by secularist candidates
Instrument narrow victory by secular parties in a district
Outcome religious violence
Model Table2(1)
df<-readRDS("apsr_Nellis_etal_2018.rds")
D <-'secular_win'
Y <- "any_violence"
Z <- "secular_close_win"
controls <-"secular_close_race"
cl <- "cluster_var"
FE <- "pro"
weights<-NULL
(g<-ivDiag(data=df, Y=Y, D=D, Z=Z, controls=controls, FE =FE, 
  cl =cl,weights=weights, cores = cores))
## $est_ols
##            Coef     SE       t CI 2.5% CI 97.5% p.value
## Analytic -0.015 0.0364 -0.4107 -0.0863   0.0564  0.6813
## Boot.c   -0.015 0.0373 -0.4009 -0.0869   0.0613  0.6980
## Boot.t   -0.015 0.0364 -0.4107 -0.0710   0.0410  0.6050
## 
## $est_2sls
##             Coef     SE       t CI 2.5% CI 97.5% p.value
## Analytic -0.6603 0.2154 -3.0658 -1.0825  -0.2382  0.0022
## Boot.c   -0.6603 0.2587 -2.5530 -1.1298  -0.0963  0.0260
## Boot.t   -0.6603 0.2154 -3.0658 -1.0353  -0.2854  0.0130
## 
## $AR
## $AR$Fstat
##        F      df1      df2        p 
##  12.2950   1.0000 435.0000   0.0005 
## 
## $AR$ci.print
## [1] "[-1.1557, -0.2813]"
## 
## $AR$ci
## [1] -1.1557 -0.2813
## 
## $AR$bounded
## [1] TRUE
## 
## 
## $F_stat
##  F.standard    F.robust   F.cluster F.bootstrap F.effective 
##     22.0208     60.0400     53.9103     39.2415     53.9103 
## 
## $rho
## [1] 0.2207
## 
## $tF
##       F      cF    Coef      SE       t  CI2.5% CI97.5% p-value 
## 53.9103  2.1258 -0.6603  0.2154 -3.0658 -1.1182 -0.2025  0.0047 
## 
## $est_rf
##                      Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## secular_close_win -0.5965 0.1711   5e-04 0.1996  -0.8677   -0.0893     0.026
## 
## $est_fs
##                     Coef    SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## secular_close_win 0.9034 0.123       0 0.1442   0.6131    1.1739         0
## 
## $p_iv
## [1] 1
## 
## $N
## [1] 437
## 
## $N_cl
## [1] 54
## 
## $df
## [1] 430
## 
## $nvalues
##      any_violence secular_win secular_close_win
## [1,]            2          26                17
## 
## attr(,"class")
## [1] "ivDiag"
plot_coef(g)

Pianzola et al. (2019)

Replication Summary
Unit of analysis individual
Treatment smartvote use
Instrument random assignment of the e-mail treatment
Outcome vote intentions
Model Table4(3)
df <- readRDS("jop_Pianzola_etal_2019.rds")
D <- "smartvote"
Y <- "diff_top_ptv"
Z <- "email"
controls <- NULL
cl <- NULL
FE <- NULL
weights<-NULL
(g<-ivDiag(data=df, Y=Y, D=D, Z=Z, controls=controls, FE =FE, 
  cl =cl,weights=weights, cores = cores))
## $est_ols
##            Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 0.0805 0.0684 1.1767 -0.0536   0.2146  0.2393
## Boot.c   0.0805 0.0673 1.1964 -0.0494   0.2118  0.2200
## Boot.t   0.0805 0.0684 1.1767 -0.0522   0.2132  0.2350
## 
## $est_2sls
##           Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 0.755 0.3788 1.9934  0.0126   1.4974  0.0462
## Boot.c   0.755 0.3805 1.9843  0.0146   1.5475  0.0460
## Boot.t   0.755 0.3788 1.9934  0.0545   1.4556  0.0360
## 
## $AR
## $AR$Fstat
##         F       df1       df2         p 
##    4.2767    1.0000 1773.0000    0.0388 
## 
## $AR$ci.print
## [1] "[0.0429, 1.5883]"
## 
## $AR$ci
## [1] 0.0429 1.5883
## 
## $AR$bounded
## [1] TRUE
## 
## 
## $F_stat
##  F.standard    F.robust   F.cluster F.bootstrap F.effective 
##     46.7293     46.7612          NA     49.7664     46.7612 
## 
## $rho
## [1] 0.1602
## 
## $tF
##       F      cF    Coef      SE       t  CI2.5% CI97.5% p-value 
## 46.7612  2.1662  0.7550  0.3788  1.9934 -0.0654  1.5755  0.0713 
## 
## $est_rf
##         Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## email 0.1032 0.0499  0.0386 0.0491   0.0025    0.1936     0.046
## 
## $est_fs
##         Coef   SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## email 0.1367 0.02       0 0.0194   0.0967    0.1718         0
## 
## $p_iv
## [1] 1
## 
## $N
## [1] 1775
## 
## $N_cl
## NULL
## 
## $df
## [1] 1773
## 
## $nvalues
##      diff_top_ptv smartvote email
## [1,]           18         2     2
## 
## attr(,"class")
## [1] "ivDiag"
plot_coef(g)

Ritter and Conrad (2016)

Replication Summary
Unit of analysis province in 54 African countries*day
Treatment mobilized dissent
Instrument rainfall
Outcome repression
Model Table1(3b)
df <- readRDS("apsr_Ritter_etal_2016.rds")
D <- "dissentcount"
Y <- "represscount"
Z <- c("lograin", "rainannualpct")
controls <-"urban_mean"
cl<- NULL
FE<- NULL
weights<-NULL
(g<-ivDiag(data=df, Y=Y, D=D, Z=Z, controls=controls, FE =FE, 
  cl =cl,weights=weights, cores = cores))
## $est_ols
##            Coef     SE       t CI 2.5% CI 97.5% p.value
## Analytic 0.1885 0.0067 28.0525  0.1754   0.2017       0
## Boot.c   0.1885 0.0065 29.0698  0.1756   0.2006       0
## Boot.t   0.1885 0.0067 28.0525  0.1757   0.2014       0
## 
## $est_2sls
##            Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 0.2708 0.0676 4.0058  0.1383   0.4033   1e-04
## Boot.c   0.2708 0.0694 3.9045  0.1287   0.4054   0e+00
## Boot.t   0.2708 0.0676 4.0058  0.1356   0.4060   0e+00
## 
## $AR
## $AR$Fstat
##           F         df1         df2           p 
## 8.36210e+00 2.00000e+00 1.25873e+06 2.00000e-04 
## 
## $AR$ci.print
## [1] "[0.1153, 0.4438]"
## 
## $AR$ci
## [1] 0.1153 0.4438
## 
## $AR$bounded
## [1] TRUE
## 
## 
## $F_stat
##  F.standard    F.robust   F.cluster F.bootstrap F.effective 
##     58.3505     73.6819          NA     79.5953     74.3587 
## 
## $rho
## [1] 0.0096
## 
## $est_rf
##                  Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## lograin        0.0001 0.0000  0.0000 0.0000   0.0001    0.0002     0.000
## rainannualpct -0.0092 0.0059  0.1199 0.0059  -0.0207    0.0027     0.136
## 
## $est_fs
##                  Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## lograin        0.0005 0.0000   0e+00 0.0000   0.0004    0.0006         0
## rainannualpct -0.0250 0.0065   1e-04 0.0064  -0.0365   -0.0116         0
## 
## $p_iv
## [1] 2
## 
## $N
## [1] 1258733
## 
## $N_cl
## NULL
## 
## $df
## [1] 1258730
## 
## $nvalues
##      represscount dissentcount lograin rainannualpct
## [1,]            3            5  390194        593785
## 
## attr(,"class")
## [1] "ivDiag"
plot_coef(g)

Rueda (2017)

Replication Summary
Unit of analysis city
Treatment actual polling place size.
Instrument the size of the polling station
Outcome citizens’ reports of electoral manipulation
Model Table5(1)
df <- readRDS("ajps_Rueda_2017.rds")
D <-"lm_pob_mesa"
Y <- "e_vote_buying"
Z <- "lz_pob_mesa_f"
controls <- c("lpopulation", "lpotencial")
cl <- "muni_code"
FE <- NULL
weights<-NULL
(g<-ivDiag(data=df, Y=Y, D=D, Z=Z, controls=controls, FE =FE, 
  cl =cl,weights=weights, cores = cores))
## $est_ols
##            Coef     SE       t CI 2.5% CI 97.5% p.value
## Analytic -0.675 0.1011 -6.6803 -0.8731  -0.4770       0
## Boot.c   -0.675 0.0993 -6.7992 -0.8898  -0.4870       0
## Boot.t   -0.675 0.1011 -6.6803 -0.8353  -0.5148       0
## 
## $est_2sls
##             Coef     SE       t CI 2.5% CI 97.5% p.value
## Analytic -0.9835 0.1424 -6.9071 -1.2626  -0.7044       0
## Boot.c   -0.9835 0.1407 -6.9880 -1.2757  -0.7237       0
## Boot.t   -0.9835 0.1424 -6.9071 -1.2166  -0.7505       0
## 
## $AR
## $AR$Fstat
##         F       df1       df2         p 
##   48.4768    1.0000 4350.0000    0.0000 
## 
## $AR$ci.print
## [1] "[-1.2626, -0.7073]"
## 
## $AR$ci
## [1] -1.2626 -0.7073
## 
## $AR$bounded
## [1] TRUE
## 
## 
## $F_stat
##  F.standard    F.robust   F.cluster F.bootstrap F.effective 
##    3106.387    3108.591    8598.326    9283.818    8598.326 
## 
## $rho
## [1] 0.6455
## 
## $tF
##         F        cF      Coef        SE         t    CI2.5%   CI97.5%   p-value 
## 8598.3264    1.9600   -0.9835    0.1424   -6.9071   -1.2626   -0.7044    0.0000 
## 
## $est_rf
##                  Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## lz_pob_mesa_f -0.7826 0.1124       0 0.1116  -1.0153   -0.5757         0
## 
## $est_fs
##                 Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## lz_pob_mesa_f 0.7957 0.0086       0 0.0083   0.7807    0.8122         0
## 
## $p_iv
## [1] 1
## 
## $N
## [1] 4352
## 
## $N_cl
## [1] 1098
## 
## $df
## [1] 4348
## 
## $nvalues
##      e_vote_buying lm_pob_mesa lz_pob_mesa_f
## [1,]            16        4118          3860
## 
## attr(,"class")
## [1] "ivDiag"
plot_coef(g)

Schleiter and Tavits (2016)

Replication Summary
Unit of analysis election
Treatment opportunistic election calling
Instrument prime Minister dissolution power
Outcome vote share of Prime Minister’s party
Model Table3(b4)
df<- readRDS("jop_Schleiter_etal_2016.rds")
D <- "term2"
Y <- "pm_voteshare_next"
Z <- "disspm"
controls <- c("pm_voteshare", "gdp_chg1yr", "cpi1yr",  "dumcpi1yr")
cl <- "countryn"
FE <- "decade"
weights<-NULL
(g<-ivDiag(data=df, Y=Y, D=D, Z=Z, controls=controls, FE =FE, 
  cl =cl,weights=weights, cores = cores))
## $est_ols
##            Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 3.0828 1.0369 2.9730  1.0504   5.1152  0.0029
## Boot.c   3.0828 1.2590 2.4485  1.4056   6.5674  0.0000
## Boot.t   3.0828 1.0369 2.9730  1.1824   4.9832  0.0020
## 
## $est_2sls
##            Coef      SE      t CI 2.5% CI 97.5% p.value
## Analytic 5.0282  2.5494 1.9723  0.0314  10.0250  0.0486
## Boot.c   5.0282 37.1369 0.1354  0.9922  23.6677  0.0240
## Boot.t   5.0282  2.5494 1.9723 -0.1119  10.1683  0.0550
## 
## $AR
## $AR$Fstat
##        F      df1      df2        p 
##   5.1692   1.0000 189.0000   0.0241 
## 
## $AR$ci.print
## [1] "[0.6433, 10.7899]"
## 
## $AR$ci
## [1]  0.6433 10.7899
## 
## $AR$bounded
## [1] TRUE
## 
## 
## $F_stat
##  F.standard    F.robust   F.cluster F.bootstrap F.effective 
##    107.0322     75.6881     57.1949     21.6972     57.1949 
## 
## $rho
## [1] 0.6117
## 
## $tF
##       F      cF    Coef      SE       t  CI2.5% CI97.5% p-value 
## 57.1949  2.1037  5.0282  2.5494  1.9723 -0.3350 10.3914  0.0661 
## 
## $est_rf
##          Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## disspm 0.3124 0.1412  0.0269 0.2014   0.0893    0.8654     0.004
## 
## $est_fs
##          Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## disspm 0.0621 0.0082       0 0.0133   0.0224    0.0739      0.02
## 
## $p_iv
## [1] 1
## 
## $N
## [1] 191
## 
## $N_cl
## [1] 25
## 
## $df
## [1] 179
## 
## $nvalues
##      pm_voteshare_next term2 disspm
## [1,]               157     2      6
## 
## attr(,"class")
## [1] "ivDiag"
plot_coef(g)

Schubiger (2021)

Replication Summary
Unit of analysis community
Treatment exposure to state violence
Instrument location of a community inside or outside the emergency zone
Outcome counterinsurgent mobilization
df <-readRDS("jop_Schubiger_2021.rds")
D <- "violence_est_period2"
Y<-"autodefensa"
Z <- "emzone"
controls <-"distance"
cl<- NULL
FE<- NULL
weights<-NULL
(g<-ivDiag(data=df, Y=Y, D=D, Z=Z, controls=controls, FE =FE, 
  cl =cl,weights=weights, cores = cores))
## $est_ols
##            Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 0.0702 0.0140 5.0069  0.0427   0.0977       0
## Boot.c   0.0702 0.0137 5.1153  0.0435   0.0971       0
## Boot.t   0.0702 0.0140 5.0069  0.0410   0.0994       0
## 
## $est_2sls
##            Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 0.2736 0.0764 3.5814  0.1239   0.4234   3e-04
## Boot.c   0.2736 0.0772 3.5435  0.1419   0.4445   2e-03
## Boot.t   0.2736 0.0764 3.5814  0.1335   0.4138   1e-03
## 
## $AR
## $AR$Fstat
##         F       df1       df2         p 
##   12.7351    1.0000 7293.0000    0.0004 
## 
## $AR$ci.print
## [1] "[0.1300, 0.4463]"
## 
## $AR$ci
## [1] 0.1300 0.4463
## 
## $AR$bounded
## [1] TRUE
## 
## 
## $F_stat
##  F.standard    F.robust   F.cluster F.bootstrap F.effective 
##     39.9899     38.5348          NA     39.0398     38.5348 
## 
## $rho
## [1] 0.0739
## 
## $tF
##       F      cF    Coef      SE       t  CI2.5% CI97.5% p-value 
## 38.5348  2.2392  0.2736  0.0764  3.5814  0.1025  0.4447  0.0017 
## 
## $est_rf
##          Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## emzone 0.0172 0.0048   4e-04 0.0046   0.0084    0.0263     0.002
## 
## $est_fs
##          Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## emzone 0.0629 0.0101       0 0.0101   0.0447     0.083         0
## 
## $p_iv
## [1] 1
## 
## $N
## [1] 7295
## 
## $N_cl
## NULL
## 
## $df
## [1] 7292
## 
## $nvalues
##      autodefensa violence_est_period2 emzone
## [1,]           2                    2      2
## 
## attr(,"class")
## [1] "ivDiag"
plot_coef(g)

Sexton, Wellhausen, and Findley (2019)

Replication Summary
Unit of analysis department*year
Treatment health budget
Instrument soldier fatalities
Outcome health social service
Model Table3(1)
df <-readRDS("ajps_Sexton_etal_2019.rds")
D<-"socialservice_b"
Y <- "Finfant_mortality"
Z <- "Lgk_budget"
controls <- c("Lgk_prebudget", "ln_pbi_pc", "execution_nohealth")
cl <- "deptcode"
FE <- c("year","deptcode")
weights<-NULL
(g<-ivDiag(data=df, Y=Y, D=D, Z=Z, controls=controls, FE =FE, 
  cl =cl,weights=weights, cores = cores))
## $est_ols
##             Coef     SE       t CI 2.5% CI 97.5% p.value
## Analytic -1.3472 1.0152 -1.3270 -3.3371   0.6426  0.1845
## Boot.c   -1.3472 1.1355 -1.1865 -3.6927   1.0357  0.2249
## Boot.t   -1.3472 1.0152 -1.3270 -3.0160   0.3215  0.1185
## 
## $est_2sls
##              Coef      SE       t  CI 2.5% CI 97.5% p.value
## Analytic -15.0645  8.0376 -1.8743 -30.8181   0.6892  0.0609
## Boot.c   -15.0645 27.9848 -0.5383 -53.5834   6.8637  0.1905
## Boot.t   -15.0645  8.0376 -1.8743 -68.7129  38.5839  0.1824
## 
## $AR
## $AR$Fstat
##       F     df1     df2       p 
## 18.0386  1.0000 70.0000  0.0001 
## 
## $AR$ci.print
## [1] "[-66.3101, -5.4194]"
## 
## $AR$ci
## [1] -66.3101  -5.4194
## 
## $AR$bounded
## [1] TRUE
## 
## 
## $F_stat
##  F.standard    F.robust   F.cluster F.bootstrap F.effective 
##      1.0172      2.5692      7.4923      2.9521      7.4923 
## 
## $rho
## [1] 0.1538
## 
## $tF
##        F       cF     Coef       SE        t   CI2.5%  CI97.5%  p-value 
##   7.4923   4.1607 -15.0645   8.0376  -1.8743 -48.5065  18.3775   0.3773 
## 
## $est_rf
##              Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## Lgk_budget 4.3552 1.0481       0 2.0897  -1.5824    6.0187    0.1662
## 
## $est_fs
##               Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## Lgk_budget -0.2891 0.1056  0.0062 0.1683   -0.712   -0.0427    0.0344
## 
## $p_iv
## [1] 1
## 
## $N
## [1] 72
## 
## $N_cl
## [1] 24
## 
## $df
## [1] 23
## 
## $nvalues
##      Finfant_mortality socialservice_b Lgk_budget
## [1,]                39              72          6
## 
## attr(,"class")
## [1] "ivDiag"
plot_coef(g)

Spenkuch and Tillmann (2018)

Replication Summary
Unit of analysis electoral district
Treatment religion of voters living in the same areas more than three and a half centuries later
Instrument individual princes’ decisions concerning whether to adopt Protestantism
Outcome Nazi vote share
Model Table2(B1)
df <-readRDS("ajps_Spenkuch_etal_2018.rds")
D <-"r_1925C_kath"
Y <- "r_NSDAP_NOV1932_p"
Z <- c("r_kath1624", "r_gem1624")
controls <- c("r_1925C_juden", "r_1925C_others", 
              "r_M1925C_juden","r_M1925C_others")
cl <- 'WKNR'
FE <- NULL
weights="r_wahlberechtigte_NOV1932"
(g<-ivDiag(data=df, Y=Y, D=D, Z=Z, controls=controls, FE =FE, 
  cl =cl,weights=weights, cores = cores))
## $est_ols
##             Coef     SE        t CI 2.5% CI 97.5% p.value
## Analytic -0.2504 0.0185 -13.5112 -0.2867  -0.2141       0
## Boot.c   -0.2504 0.0188 -13.2876 -0.2906  -0.2145       0
## Boot.t   -0.2504 0.0185 -13.5112 -0.2815  -0.2192       0
## 
## $est_2sls
##             Coef     SE        t CI 2.5% CI 97.5% p.value
## Analytic -0.2544 0.0182 -13.9439 -0.2902  -0.2187       0
## Boot.c   -0.2544 0.0186 -13.6957 -0.2919  -0.2195       0
## Boot.t   -0.2544 0.0182 -13.9439 -0.2840  -0.2249       0
## 
## $AR
## $AR$Fstat
##        F      df1      df2        p 
##  89.3425   2.0000 979.0000   0.0000 
## 
## $AR$ci.print
## [1] "[-0.2946, -0.2176]"
## 
## $AR$ci
## [1] -0.2946 -0.2176
## 
## $AR$bounded
## [1] TRUE
## 
## 
## $F_stat
##  F.standard    F.robust   F.cluster F.bootstrap F.effective 
##   1215.3547    726.7058    212.7390    201.1111    286.0263 
## 
## $rho
## [1] 0.8446
## 
## $est_rf
##                Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## r_kath1624 -17.2028 1.2929       0 1.3619 -19.8052  -14.4973         0
## r_gem1624   -9.1477 1.5382       0 1.6786 -13.0139   -6.3725         0
## 
## $est_fs
##               Coef    SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## r_kath1624 66.6657 3.232       0 3.3252  60.1966   73.1461         0
## r_gem1624  39.2697 4.320       0 4.7827  31.7634   50.1263         0
## 
## $p_iv
## [1] 2
## 
## $N
## [1] 982
## 
## $N_cl
## [1] 35
## 
## $df
## [1] 978
## 
## $nvalues
##      r_NSDAP_NOV1932_p r_1925C_kath r_kath1624 r_gem1624
## [1,]               982          977          2         2
## 
## attr(,"class")
## [1] "ivDiag"
plot_coef(g)

Stewart and Liou (2017)

Replication Summary
Unit of analysis insurgency*year
Treatment foreign territory
Instrument log total border length and the total number of that state’s neighbors
Outcome civilian casualties
Model Table3(1)
df <- readRDS("jop_Stewart_2017.rds")
D <- "exterrdum_low"
Y <- "oneside_best_log"
Z <- "total_border_ln"
controls <- c("bd_log", "terrdum", "strengthcent_ord", "rebstrength_ord", 
              'nonmilsupport', 'rebestsize', 'l1popdensity',
              'l1gdppc_log','l1gdppc_change')
cl <- NULL
FE <- c("year","countrynum")
weights<-NULL
(g<-ivDiag(data=df, Y=Y, D=D, Z=Z, controls=controls, FE =FE, 
  cl =cl,weights=weights, cores = cores))
## $est_ols
##           Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 0.803 0.3249 2.4716  0.1662   1.4398  0.0135
## Boot.c   0.803 0.3214 2.4982  0.1463   1.3993  0.0180
## Boot.t   0.803 0.3249 2.4716  0.1682   1.4378  0.0180
## 
## $est_2sls
##            Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 1.1929 0.5730 2.0817  0.0698   2.3161  0.0374
## Boot.c   1.1929 0.9621 1.2399  0.0118   2.7641  0.0500
## Boot.t   1.1929 0.5730 2.0817  0.1126   2.2733  0.0260
## 
## $AR
## $AR$Fstat
##        F      df1      df2        p 
##   5.0089   1.0000 464.0000   0.0257 
## 
## $AR$ci.print
## [1] "[0.1500, 2.2817]"
## 
## $AR$ci
## [1] 0.1500 2.2817
## 
## $AR$bounded
## [1] TRUE
## 
## 
## $F_stat
##  F.standard    F.robust   F.cluster F.bootstrap F.effective 
##     33.9859     99.3150          NA     71.5162     99.3150 
## 
## $rho
## [1] 0.2786
## 
## $tF
##       F      cF    Coef      SE       t  CI2.5% CI97.5% p-value 
## 99.3150  1.9734  1.1929  0.5730  2.0817  0.0621  2.3238  0.0387 
## 
## $est_rf
##                    Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## total_border_ln -7.0905 3.3952  0.0368 6.0192 -15.8075   -0.0678      0.05
## 
## $est_fs
##                    Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## total_border_ln -5.9438 0.5964       0 0.7029  -7.3685   -4.6834         0
## 
## $p_iv
## [1] 1
## 
## $N
## [1] 466
## 
## $N_cl
## NULL
## 
## $df
## [1] 404
## 
## $nvalues
##      oneside_best_log exterrdum_low total_border_ln
## [1,]              113             2              45
## 
## attr(,"class")
## [1] "ivDiag"
plot_coef(g)

Stokes (2016)

Replication Summary
Unit of analysis precinct
Treatment turbine location
Instrument wind speed
Outcome vote turnout
Model Table2(2)
df<-readRDS("ajps_Stokes_2016.rds")
D <-"prop_3km"
Y <- "chng_lib"
Z <- "avg_pwr_log"
controls <- c("mindistlake", "mindistlake_sq", "longitude", 
              "long_sq", "latitude", "lat_sq", "long_lat")
cl <- NULL
FE <- "ed_id"
weights<-NULL
(g<-ivDiag(data=df, Y=Y, D=D, Z=Z, controls=controls, FE =FE, 
  cl =cl,weights=weights, cores = cores))
## $est_ols
##             Coef     SE       t CI 2.5% CI 97.5% p.value
## Analytic -0.0203 0.0073 -2.7638 -0.0347  -0.0059  0.0057
## Boot.c   -0.0203 0.0072 -2.8013 -0.0346  -0.0058  0.0040
## Boot.t   -0.0203 0.0073 -2.7638 -0.0347  -0.0059  0.0050
## 
## $est_2sls
##            Coef     SE       t CI 2.5% CI 97.5% p.value
## Analytic -0.077 0.0282 -2.7289 -0.1323  -0.0217  0.0064
## Boot.c   -0.077 0.0307 -2.5076 -0.1403  -0.0226  0.0080
## Boot.t   -0.077 0.0282 -2.7289 -0.1316  -0.0223  0.0080
## 
## $AR
## $AR$Fstat
##        F      df1      df2        p 
##   7.6582   1.0000 706.0000   0.0058 
## 
## $AR$ci.print
## [1] "[-0.1345, -0.0234]"
## 
## $AR$ci
## [1] -0.1345 -0.0234
## 
## $AR$bounded
## [1] TRUE
## 
## 
## $F_stat
##  F.standard    F.robust   F.cluster F.bootstrap F.effective 
##     67.9032     65.7306          NA     65.6400     65.7306 
## 
## $rho
## [1] 0.3025
## 
## $tF
##       F      cF    Coef      SE       t  CI2.5% CI97.5% p-value 
## 65.7306  2.0693 -0.0770  0.0282 -2.7289 -0.1354 -0.0186  0.0097 
## 
## $est_rf
##                Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## avg_pwr_log -0.0585 0.0216  0.0069 0.0216  -0.0995    -0.016     0.008
## 
## $est_fs
##               Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## avg_pwr_log 0.7602 0.0938       0 0.0938   0.5566    0.9244         0
## 
## $p_iv
## [1] 1
## 
## $N
## [1] 708
## 
## $N_cl
## NULL
## 
## $df
## [1] 674
## 
## $nvalues
##      chng_lib prop_3km avg_pwr_log
## [1,]      708        2         708
## 
## attr(,"class")
## [1] "ivDiag"
plot_coef(g)

Tajima (2013)

Replication Summary
Unit of analysis village and urban neighborhood
Treatment distance to police posts (as a proxy for exposure to military intervention)
Instrument distance to health station
Outcome incidence of communal violence
Model Table1(4)
df<-readRDS("ajps_Tajima_2013.rds")
D <-"z2_distpospol"
Y <- "horiz2"
Z <- "z2_dispuskes"
controls <- c("flat", "z2_altitude","urban", "natres", "z2_logvillpop", "z2_logdensvil",
              "z2_povrateksvil", "z2_fgtksvild", "z2_covyredvil", "z2_npwperhh", 
              "z2_ethfractvil","z2_ethfractsd", "z2_ethfractd", "z2_relfractvil", 
              "z2_relfractsd", "z2_relfractd", "z2_ethclustsd", "z2_ethclustvd", 
              "z2_relclustsd", "z2_relclustvd", "z2_wgcovegvil", "z2_wgcovegsd", 
              "z2_wgcovegd", "z2_wgcovrgvil", "z2_wgcovrgsd", "z2_wgcovrgd",
              "natdis","javanese_off_java", "islam", "split_kab03", "split_vil03")
cl <- 'kabid03'
FE <- 'prop'
weights<-"probit_touse_wts03"
(g<-ivDiag(data=df, Y=Y, D=D, Z=Z, controls=controls, FE =FE, 
  cl =cl,weights=weights, cores = cores))
## $est_ols
##             Coef    SE       t CI 2.5% CI 97.5% p.value
## Analytic -0.0024 6e-04 -3.7223 -0.0037  -0.0011   2e-04
## Boot.c   -0.0024 7e-04 -3.5620 -0.0036  -0.0011   0e+00
## Boot.t   -0.0024 6e-04 -3.7223 -0.0034  -0.0014   0e+00
## 
## $est_2sls
##             Coef     SE       t CI 2.5% CI 97.5% p.value
## Analytic -0.0041 0.0014 -3.0103 -0.0068  -0.0014  0.0026
## Boot.c   -0.0041 0.0015 -2.8064 -0.0069  -0.0009  0.0080
## Boot.t   -0.0041 0.0014 -3.0103 -0.0063  -0.0020  0.0000
## 
## $AR
## $AR$Fstat
##          F        df1        df2          p 
##     9.0632     1.0000 51911.0000     0.0026 
## 
## $AR$ci.print
## [1] "[-0.0069, -0.0015]"
## 
## $AR$ci
## [1] -0.0069 -0.0015
## 
## $AR$bounded
## [1] TRUE
## 
## 
## $F_stat
##  F.standard    F.robust   F.cluster F.bootstrap F.effective 
##  13363.7649   1529.0807    202.6374    222.4057    202.6374 
## 
## $rho
## [1] 0.4527
## 
## $tF
##        F       cF     Coef       SE        t   CI2.5%  CI97.5%  p-value 
## 202.6374   1.9600  -0.0041   0.0014  -3.0103  -0.0068  -0.0014   0.0026 
## 
## $est_rf
##                 Coef    SE p.value  SE.b CI.b2.5% CI.b97.5% p.value.b
## z2_dispuskes -0.0019 6e-04  0.0026 7e-04  -0.0031    -4e-04     0.008
## 
## $est_fs
##               Coef     SE p.value SE.b CI.b2.5% CI.b97.5% p.value.b
## z2_dispuskes 0.447 0.0314       0 0.03    0.392    0.5057         0
## 
## $p_iv
## [1] 1
## 
## $N
## [1] 51913
## 
## $N_cl
## [1] 326
## 
## $df
## [1] 51853
## 
## $nvalues
##      horiz2 z2_distpospol z2_dispuskes
## [1,]      2           101          101
## 
## attr(,"class")
## [1] "ivDiag"
plot_coef(g)

Trounstine (2016)

Replication Summary
Unit of analysis city*year
Treatment racial segregation
Instrument the number of waterways in a city; logged population
Outcome direct general expenditures
Model Table5(1)
df<-readRDS("ajps_Trounstine_2016.rds")
D <-"H_citytract_NHW_i"
Y <- "dgepercap_cpi"
Z <- c("total_rivs_all", "logpop")
controls <- c("dgepercap_cpilag","diversityinterp","pctblkpopinterp",
              "pctasianpopinterp","pctlatinopopinterp","medincinterp",
              "pctlocalgovworker_100","pctrentersinterp","pctover65",
              "pctcollegegradinterp","northeast","south","midwest", 
              "y5", "y6", "y7", "y8", "y9")
cl <- NULL
FE <- NULL
weights<-NULL
(g<-ivDiag(data=df, Y=Y, D=D, Z=Z, controls=controls, FE =FE, 
  cl =cl,weights=weights, cores = cores))
## $est_ols
##             Coef     SE       t CI 2.5% CI 97.5% p.value
## Analytic -0.9265 0.8648 -1.0713 -2.6214   0.7685   0.284
## Boot.c   -0.9265 0.8965 -1.0334 -2.6981   0.5495   0.462
## Boot.t   -0.9265 0.8648 -1.0713 -7.8776   6.0247   0.491
## 
## $est_2sls
##             Coef     SE       t  CI 2.5% CI 97.5% p.value
## Analytic -2.6757 1.6174 -1.6543  -5.8458   0.4944  0.0981
## Boot.c   -2.6757 1.7563 -1.5235  -5.7401   0.7848  0.1960
## Boot.t   -2.6757 1.6174 -1.6543 -15.7144  10.3630  0.2920
## 
## $AR
## $AR$Fstat
##          F        df1        df2          p 
##     2.3548     2.0000 21142.0000     0.0949 
## 
## $AR$ci.print
## [1] "[-6.3310, 0.3650]"
## 
## $AR$ci
## [1] -6.331  0.365
## 
## $AR$bounded
## [1] TRUE
## 
## 
## $F_stat
##  F.standard    F.robust   F.cluster F.bootstrap F.effective 
##    3883.651    2506.495          NA    2351.684    3654.705 
## 
## $rho
## [1] 0.5185
## 
## $est_rf
##                   Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## total_rivs_all -0.0081 0.0229  0.7217 0.0243  -0.0625    0.0281     0.870
## logpop         -0.0855 0.0407  0.0355 0.0453  -0.1604    0.0108     0.104
## 
## $est_fs
##                  Coef    SE p.value  SE.b CI.b2.5% CI.b97.5% p.value.b
## total_rivs_all 0.0054 3e-04       0 3e-04   0.0048    0.0060         0
## logpop         0.0291 5e-04       0 5e-04   0.0282    0.0301         0
## 
## $p_iv
## [1] 2
## 
## $N
## [1] 21145
## 
## $N_cl
## NULL
## 
## $df
## [1] 21125
## 
## $nvalues
##      dgepercap_cpi H_citytract_NHW_i total_rivs_all logpop
## [1,]         21129             15395             22  16223
## 
## attr(,"class")
## [1] "ivDiag"
plot_coef(g)

Urpelainen and Zhang (2022)

Replication Summary
Unit of analysis district*year
Treatment wind turbine capacity
Instrument time trend multiplied by the wind resource of the electoral district
Outcome Democratic vote
Model Table3(B1)
df <-readRDS("jop_urpelainen_2022.rds")
D <- "cum_capacity_turbine"
Y<-"demvotesmajorpercent"
Z <- "inter"
controls <-NULL
cl<- "district_fixed"
FE<- c("stateyear_fixed","district_fixed")
weights<-NULL
(g<-ivDiag(data=df, Y=Y, D=D, Z=Z, controls=controls, FE =FE, 
  cl =cl,weights=weights, cores = cores))
## $est_ols
##            Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 0.0063 0.0028 2.2395   8e-04   0.0118  0.0251
## Boot.c   0.0063 0.0036 1.7617   4e-04   0.0140  0.0400
## Boot.t   0.0063 0.0028 2.2395   3e-04   0.0123  0.0430
## 
## $est_2sls
##            Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 0.0296 0.0109 2.7312  0.0084   0.0509  0.0063
## Boot.c   0.0296 0.0155 1.9177  0.0095   0.0680  0.0060
## Boot.t   0.0296 0.0109 2.7312  0.0126   0.0466  0.0090
## 
## $AR
## $AR$Fstat
##         F       df1       df2         p 
##    9.5546    1.0000 1142.0000    0.0020 
## 
## $AR$ci.print
## [1] "[0.0112, 0.0618]"
## 
## $AR$ci
## [1] 0.0112 0.0618
## 
## $AR$bounded
## [1] TRUE
## 
## 
## $F_stat
##  F.standard    F.robust   F.cluster F.bootstrap F.effective 
##     93.4366     27.8543     16.1654     16.3825     16.1654 
## 
## $rho
## [1] 0.3269
## 
## $tF
##       F      cF    Coef      SE       t  CI2.5% CI97.5% p-value 
## 16.1654  2.7897  0.0296  0.0109  2.7312 -0.0006  0.0599  0.0550 
## 
## $est_rf
##         Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## inter 0.9095 0.2942   0.002 0.3288   0.2682    1.5584     0.006
## 
## $est_fs
##          Coef     SE p.value  SE.b CI.b2.5% CI.b97.5% p.value.b
## inter 30.6883 7.6327   1e-04 7.582   14.038   44.0125         0
## 
## $p_iv
## [1] 1
## 
## $N
## [1] 1144
## 
## $N_cl
## [1] 287
## 
## $df
## [1] 286
## 
## $nvalues
##      demvotesmajorpercent cum_capacity_turbine inter
## [1,]                  965                  141   777
## 
## attr(,"class")
## [1] "ivDiag"
plot_coef(g)

Vernby (2013)

Replication Summary
Unit of analysis municipality*term
Treatment share of noncitizens in the electorate
Instrument immigration Inflow 1940–1950; Immigration Inflow 1960–1967
Outcome municipal education and social spending
Model Table3(2)
df<-readRDS("ajps_Vernby_2013.rds")
D <-"noncitvotsh"
Y <- "Y"
Z <- c("inv1950", "inv1967")
controls <- c("Taxbase2", "L_Taxbase2", "manu", "L_manu", "pop", "L_pop")
cl <- "lan"
FE <- NULL
weights<-NULL
(g<-ivDiag(data=df, Y=Y, D=D, Z=Z, controls=controls, FE =FE, 
  cl =cl,weights=weights, cores = cores))
## $est_ols
##            Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 8.9328 1.9684 4.5382  5.0748  12.7908       0
## Boot.c   8.9328 2.3599 3.7853  3.4102  12.4789       0
## Boot.t   8.9328 1.9684 4.5382  4.5460  13.3197       0
## 
## $est_2sls
##             Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 10.5903 2.9560 3.5827  4.7965  16.3840  0.0003
## Boot.c   10.5903 4.1475 2.5534  2.2424  18.4713  0.0320
## Boot.t   10.5903 2.9560 3.5827  5.2778  15.9028  0.0030
## 
## $AR
## $AR$Fstat
##        F      df1      df2        p 
##   5.7276   2.0000 180.0000   0.0039 
## 
## $AR$ci.print
## [1] "[3.7915, 17.1525]"
## 
## $AR$ci
## [1]  3.7915 17.1525
## 
## $AR$bounded
## [1] TRUE
## 
## 
## $F_stat
##  F.standard    F.robust   F.cluster F.bootstrap F.effective 
##     66.2203     49.5670     79.6400     28.6973    103.3586 
## 
## $rho
## [1] 0.6574
## 
## $est_rf
##            Coef     SE p.value    SE.b CI.b2.5% CI.b97.5% p.value.b
## inv1950  2.5029 9.0396  0.7819 11.6532 -22.5372   21.6355     0.948
## inv1967 10.0729 7.2288  0.1635  9.2774  -7.7940   29.6526     0.188
## 
## $est_fs
##           Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## inv1950 0.7234 0.3444  0.0357 0.4147  -0.0883    1.4789     0.102
## inv1967 0.4665 0.2984  0.1180 0.3171  -0.2306    0.9864     0.182
## 
## $p_iv
## [1] 2
## 
## $N
## [1] 183
## 
## $N_cl
## [1] 25
## 
## $df
## [1] 175
## 
## $nvalues
##        Y noncitvotsh inv1950 inv1967
## [1,] 183         183      25      25
## 
## attr(,"class")
## [1] "ivDiag"
plot_coef(g)

Webster, Connors, and Sinclair (2022)

Replication Summary
Unit of analysis individual
Treatment percentage of angry words that a respondent wrote in his or her emotional recall prompt
Instrument treatment assignment indicator
Outcome social polarization: do favors
Model Table2(1)
df <-readRDS("jop_Webster_2022.rds")
D <- "anger"
Y<-"fourpack_1_01"
Z <- "treated"
controls <-"democrat"
cl<- NULL
FE<- NULL
weights<-NULL
(g<-ivDiag(data=df, Y=Y, D=D, Z=Z, controls=controls, FE =FE, 
  cl =cl,weights=weights, cores = cores))
## $est_ols
##            Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 0.0024 0.0018 1.3413 -0.0011   0.0058  0.1798
## Boot.c   0.0024 0.0018 1.3238 -0.0014   0.0058  0.1740
## Boot.t   0.0024 0.0018 1.3413 -0.0013   0.0060  0.1900
## 
## $est_2sls
##            Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 0.0108 0.0039 2.8123  0.0033   0.0184  0.0049
## Boot.c   0.0108 0.0038 2.8190  0.0039   0.0188  0.0020
## Boot.t   0.0108 0.0039 2.8123  0.0032   0.0185  0.0040
## 
## $AR
## $AR$Fstat
##         F       df1       df2         p 
##    7.9872    1.0000 3408.0000    0.0047 
## 
## $AR$ci.print
## [1] "[0.0034, 0.0184]"
## 
## $AR$ci
## [1] 0.0034 0.0184
## 
## $AR$bounded
## [1] TRUE
## 
## 
## $F_stat
##  F.standard    F.robust   F.cluster F.bootstrap F.effective 
##    801.9232    773.5894          NA    812.1332    773.5894 
## 
## $rho
## [1] 0.4365
## 
## $tF
##        F       cF     Coef       SE        t   CI2.5%  CI97.5%  p-value 
## 773.5894   1.9600   0.0108   0.0039   2.8123   0.0033   0.0184   0.0049 
## 
## $est_rf
##          Coef    SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## treated 0.031 0.011  0.0047 0.0109   0.0112    0.0529     0.002
## 
## $est_fs
##           Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## treated 2.8585 0.1028       0 0.1003   2.6713    3.0544         0
## 
## $p_iv
## [1] 1
## 
## $N
## [1] 3410
## 
## $N_cl
## NULL
## 
## $df
## [1] 3407
## 
## $nvalues
##      fourpack_1_01 anger treated
## [1,]             5   252       2
## 
## attr(,"class")
## [1] "ivDiag"
plot_coef(g)

West (2017)

Replication Summary
Unit of analysis individual
Treatment Obama win
Instrument IEM (prediction market) price
Outcome political efficacy
Model Table1(4)
df<- readRDS("jop_West_2017.rds")
D <- "obama"
Y <- "newindex"
Z <- "avgprice"
controls <- c("partyd1", "partyd2", "partyd3",
              "partyd4", "partyd5", "wa01_a", "wa02_a", 
              "wa03_a", "wa04_a", "wa05_a",   "wfc02_a",
              "ra01_b",  "rd01", "wd02_b", "rkey",
              "wave_1", "dt_w12", "dt_w12_2")
cl <- NULL
FE <- c("state","religion")  
weights<-NULL
(g<-ivDiag(data=df, Y=Y, D=D, Z=Z, controls=controls, FE =FE, 
  cl =cl,weights=weights, cores = cores))
## $est_ols
##            Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 0.0358 0.0112 3.2084  0.0139   0.0577  0.0013
## Boot.c   0.0358 0.0107 3.3430  0.0144   0.0566  0.0020
## Boot.t   0.0358 0.0112 3.2084  0.0146   0.0569  0.0010
## 
## $est_2sls
##            Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 0.2073 0.0873 2.3758  0.0363   0.3784  0.0175
## Boot.c   0.2073 0.0927 2.2376  0.0520   0.4166  0.0060
## Boot.t   0.2073 0.0873 2.3758  0.0414   0.3732  0.0040
## 
## $AR
## $AR$Fstat
##         F       df1       df2         p 
##    6.5244    1.0000 2281.0000    0.0107 
## 
## $AR$ci.print
## [1] "[0.0485, 0.4046]"
## 
## $AR$ci
## [1] 0.0485 0.4046
## 
## $AR$bounded
## [1] TRUE
## 
## 
## $F_stat
##  F.standard    F.robust   F.cluster F.bootstrap F.effective 
##     41.7917     37.8652          NA     37.4568     37.8652 
## 
## $rho
## [1] 0.1362
## 
## $tF
##       F      cF    Coef      SE       t  CI2.5% CI97.5% p-value 
## 37.8652  2.2493  0.2073  0.0873  2.3758  0.0110  0.4036  0.0384 
## 
## $est_rf
##            Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## avgprice 0.1407 0.0559  0.0119 0.0563   0.0355      0.26     0.006
## 
## $est_fs
##            Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## avgprice 0.6784 0.1103       0 0.1109    0.465    0.8846         0
## 
## $p_iv
## [1] 1
## 
## $N
## [1] 2283
## 
## $N_cl
## NULL
## 
## $df
## [1] 2211
## 
## $nvalues
##      newindex obama avgprice
## [1,]      122     2      141
## 
## attr(,"class")
## [1] "ivDiag"
plot_coef(g)

Wood and Grose (2022)

Replication Summary
Unit of analysis House member/district
Treatment incumbent found to have campaign finance violations
Instrument audit
Outcome legislator Retired
Model Table2(1)
df <-readRDS("ajps_Wood_grose_2022.rds")
# preprocess to generate xwhat and xhat in Stata
D<-"findings" 
Y <- "retire__or_resign"
Z <- "audited"
controls <-c("xwhat","south")
cl <- "stcd"
FE <- NULL
weights<-NULL
(g<-ivDiag(data=df, Y=Y, D=D, Z=Z, controls=controls, FE =FE, 
  cl =cl,weights=weights, cores = cores))
## $est_ols
##            Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 0.2369 0.1076 2.2022  0.0261   0.4477  0.0276
## Boot.c   0.2369 0.1077 2.2004  0.0326   0.4564  0.0200
## Boot.t   0.2369 0.1076 2.2022  0.0059   0.4679  0.0470
## 
## $est_2sls
##            Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 0.2869 0.1615 1.7764 -0.0297   0.6035  0.0757
## Boot.c   0.2869 0.1612 1.7796 -0.0093   0.6115  0.0580
## Boot.t   0.2869 0.1615 1.7764 -0.0333   0.6071  0.0670
## 
## $AR
## $AR$Fstat
##        F      df1      df2        p 
##   2.8595   1.0000 433.0000   0.0916 
## 
## $AR$ci.print
## [1] "[-0.0523, 0.6390]"
## 
## $AR$ci
## [1] -0.0523  0.6390
## 
## $AR$bounded
## [1] TRUE
## 
## 
## $F_stat
##  F.standard    F.robust   F.cluster F.bootstrap F.effective 
##    220.6007     22.8647     22.8647     23.9958     22.8647 
## 
## $rho
## [1] 0.5819
## 
## $tF
##       F      cF    Coef      SE       t  CI2.5% CI97.5% p-value 
## 22.8647  2.5155  0.2869  0.1615  1.7764 -0.1194  0.6932  0.1663 
## 
## $est_rf
##           Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## audited 0.1377 0.0816  0.0916 0.0769  -0.0041    0.2872     0.058
## 
## $est_fs
##         Coef     SE p.value  SE.b CI.b2.5% CI.b97.5% p.value.b
## audited 0.48 0.1004       0 0.098   0.2941    0.6818         0
## 
## $p_iv
## [1] 1
## 
## $N
## [1] 435
## 
## $N_cl
## [1] 435
## 
## $df
## [1] 431
## 
## $nvalues
##      retire__or_resign findings audited
## [1,]                 2        2       2
## 
## attr(,"class")
## [1] "ivDiag"
plot_coef(g)

Zhu (2017)

Replication Summary
Unit of analysis province*period
Treatment MNC activity
Instrument weighted geographic closeness
Outcome corruption
Model Table1(1)
df <- readRDS("ajps_Zhu_2017.rds")
D <-"MNC"
Y <- "corruption1"
Z <- "lwdist"
controls <- c("lgdpcap6978", "gdp6978", "population", "lgovtexp9302", 
              "pubempratio", "leduc", "pwratio", "female", "time")
cl <- NULL
FE <- NULL
weights<-NULL
(g<-ivDiag(data=df, Y=Y, D=D, Z=Z, controls=controls, FE =FE, 
  cl =cl,weights=weights, cores = cores))
## $est_ols
##            Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 0.3531 0.0960 3.6788  0.1650   0.5412   2e-04
## Boot.c   0.3531 0.1216 2.9028  0.0925   0.5464   8e-03
## Boot.t   0.3531 0.0960 3.6788  0.1424   0.5637   1e-03
## 
## $est_2sls
##            Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 0.4855 0.1121 4.3317  0.2658   0.7052   0.000
## Boot.c   0.4855 0.1748 2.7776  0.1503   0.8720   0.008
## Boot.t   0.4855 0.1121 4.3317  0.2714   0.6996   0.000
## 
## $AR
## $AR$Fstat
##       F     df1     df2       p 
## 12.7838  1.0000 59.0000  0.0007 
## 
## $AR$ci.print
## [1] "[0.2568, 0.6850]"
## 
## $AR$ci
## [1] 0.2568 0.6850
## 
## $AR$bounded
## [1] TRUE
## 
## 
## $F_stat
##  F.standard    F.robust   F.cluster F.bootstrap F.effective 
##     45.9155     45.5515          NA     21.8910     45.5515 
## 
## $rho
## [1] 0.6919
## 
## $tF
##       F      cF    Coef      SE       t  CI2.5% CI97.5% p-value 
## 45.5515  2.1802  0.4855  0.1121  4.3317  0.2411  0.7298  0.0001 
## 
## $est_rf
##         Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## lwdist 0.559 0.1698   0.001 0.2534   0.1593    1.2162     0.008
## 
## $est_fs
##          Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## lwdist 1.1514 0.1706       0 0.2461    0.777    1.7707         0
## 
## $p_iv
## [1] 1
## 
## $N
## [1] 61
## 
## $N_cl
## NULL
## 
## $df
## [1] 50
## 
## $nvalues
##      corruption1 MNC lwdist
## [1,]          61  61     61
## 
## attr(,"class")
## [1] "ivDiag"
plot_coef(g)

Ziaja (2020)

Replication Summary
Unit of analysis country*year
Treatment number of democracy donors
Instrument constructed instrument
Outcome democracy scores
Model Table1(B2)
df <-readRDS("jop_Ziaja_2020.rds")
D <- "l.CMgnh"
Y <- "v2x.polyarchy.n"
Z <- "l.ZwvCMgwh94"
controls <-c("l.pop.log.r", "l.gdpcap.log.r", "l.war25")
cl<- "cnamef"
FE<- c("cnamef", "periodf")
weights<-NULL
(g<-ivDiag(data=df, Y=Y, D=D, Z=Z, controls=controls, FE =FE, 
  cl =cl,weights=weights, cores = cores))
## $est_ols
##            Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 0.8746 0.1931 4.5298  0.4962   1.2531       0
## Boot.c   0.8746 0.2012 4.3468  0.4081   1.2320       0
## Boot.t   0.8746 0.1931 4.5298  0.5680   1.1812       0
## 
## $est_2sls
##            Coef     SE      t CI 2.5% CI 97.5% p.value
## Analytic 0.8726 0.3877 2.2505  0.1126   1.6325  0.0244
## Boot.c   0.8726 0.4077 2.1400 -0.1117   1.4062  0.0940
## Boot.t   0.8726 0.3877 2.2505  0.2408   1.5043  0.0050
## 
## $AR
## $AR$Fstat
##         F       df1       df2         p 
##    4.8018    1.0000 2365.0000    0.0285 
## 
## $AR$ci.print
## [1] "[0.0971, 1.6248]"
## 
## $AR$ci
## [1] 0.0971 1.6248
## 
## $AR$bounded
## [1] TRUE
## 
## 
## $F_stat
##  F.standard    F.robust   F.cluster F.bootstrap F.effective 
##   1158.1467    775.0850    199.9166    206.6814    199.9166 
## 
## $rho
## [1] 0.586
## 
## $tF
##        F       cF     Coef       SE        t   CI2.5%  CI97.5%  p-value 
## 199.9166   1.9600   0.8726   0.3877   2.2505   0.1126   1.6325   0.0244 
## 
## $est_rf
##                Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## l.ZwvCMgwh94 0.0599 0.0273  0.0285 0.0299  -0.0079    0.1053     0.094
## 
## $est_fs
##                Coef     SE p.value   SE.b CI.b2.5% CI.b97.5% p.value.b
## l.ZwvCMgwh94 0.0686 0.0049       0 0.0048   0.0612    0.0804         0
## 
## $p_iv
## [1] 1
## 
## $N
## [1] 2367
## 
## $N_cl
## [1] 130
## 
## $df
## [1] 129
## 
## $nvalues
##      v2x.polyarchy.n l.CMgnh l.ZwvCMgwh94
## [1,]            2038      24         2283
## 
## attr(,"class")
## [1] "ivDiag"
plot_coef(g)


References

Acharya, Avidit, Matthew Blackwell, and Maya Sen. 2016. “The Political Legacy of American Slavery.” The Journal of Politics 78 (3): 621641.
Alt, James E., John Marshall, and David D. Lassen. 2016. “Credible Sources and Sophisticated Voters: When Does New Information Induce Economic Voting?” The Journal of Politics 78 (2): 327342.
Arias, Eric, and David Stasavage. 2019. “How Large Are the Political Costs of Fiscal Austerity?” The Journal of Politics 81 (4): 1517–22.
Baccini, Leonardo, and Stephen Weymouth. 2021. “Gone for Good: Deindustrialization, White Voter Backlash, and US Presidential Voting.” American Political Science Review 115 (2): 550–67.
Barth, Erling, Henning Finseraas, and Karl O. Moene. 2015. “Political Reinforcement: How Rising Inequality Curbs Manifested Welfare Generosity.” American Journal of Political Science 59 (3): 565577.
Bhavnani, Rikhil R., and Alexander Lee. 2018. “Local Embeddedness and Bureaucratic Performance: Evidence from India.” The Journal of Politics 80 (1): 7187.
Blair, Robert A, Jessica Di Salvatore, and Hannah M Smidt. 2022. “When Do UN Peacekeeping Operations Implement Their Mandates?” American Journal of Political Science 66 (3): 664–80.
Blattman, Christopher, Alexandra C. Hartman, and Robert A. Blair. 2014. “How to Promote Order and Property Rights Under Weak Rule of Law? An Experiment in Changing Dispute Resolution Behavior Through Community Education.” American Political Science Review, 100120.
Carnegie, Allison, and Nikolay Marinov. 2017. “Foreign Aid, Human Rights, and Democracy Promotion: Evidence from a Natural Experiment.” American Journal of Political Science 61 (3): 671683.
Charron, Nicholas, Carl Dahlström, Mihaly Fazekas, and Victor Lapuente. 2017. “Careers, Connections, and Corruption Risks: Investigating the Impact of Bureaucratic Meritocracy on Public Procurement Processes.” The Journal of Politics 79 (1): 89104.
Charron, Nicholas, and Victor Lapuente. 2013. “Why Do Some Regions in Europe Have a Higher Quality of Government?” The Journal of Politics 75 (3): 567582.
Chong, Alberto, Gianmarco León-Ciliotta, Vivian Roza, Martín Valdivia, and Gabriela Vega. 2019. “Urbanization Patterns, Information Diffusion, and Female Voting in Rural Paraguay.” American Journal of Political Science 63 (2): 323341.
Cirone, Alexandra, and Brenda Van Coppenolle. 2018. “Cabinets, Committees, and Careers: The Causal Effect of Committee Service.” The Journal of Politics 80 (3): 948963.
Colantone, Italo, and Piero Stanig. 2018a. “Global Competition and Brexit.” American Political Science Review 112 (2): 201–18.
———. 2018b. “The Trade Origins of Economic Nationalism: Import Competition and Voting Behavior in Western Europe.” American Journal of Political Science 62 (4): 936953.
Coppock, Alexander, and Donald P. Green. 2016. “Is Voting Habit Forming? New Evidence from Experiments and Regression Discontinuities.” American Journal of Political Science 60 (4): 10441062.
Croke, Kevin, Guy Grossman, Horacio A. Larreguy, and John Marshall. 2016. “Deliberate Disengagement: How Education Can Decrease Political Participation in Electoral Authoritarian Regimes.” American Political Science Review 110 (3): 579600.
De La O, Ana L. 2013. “Do Conditional Cash Transfers Affect Electoral Behavior? Evidence from a Randomized Experiment in Mexico.” American Journal of Political Science 57 (1): 114.
Dietrich, Simone, and Joseph Wright. 2015. “Foreign Aid Allocation Tactics and Democratic Change in Africa.” The Journal of Politics 77 (1): 216234.
DiGiuseppe, Matthew, and Patrick E Shea. 2022. “Us Patronage, State Capacity, and Civil Conflict.” The Journal of Politics 84 (2): 767–82.
Dower, Paul Castaneda, Evgeny Finkel, Scott Gehlbach, and Steven Nafziger. 2018. “Collective Action and Representation in Autocracies: Evidence from Russias Great Reforms.” American Political Science Review 112 (1): 125147.
Dube, Oeindrila, and Suresh Naidu. 2015. “Bases, Bullets, and Ballots: The Effect of US Military Aid on Political Conflict in Colombia.” The Journal of Politics 77 (1): 249267.
Feigenbaum, James J., and Andrew B. Hall. 2015. “How Legislators Respond to Localized Economic Shocks: Evidence from Chinese Import Competition.” The Journal of Politics 77 (4): 10121030.
Flores-Macias, Gustavo A., and Sarah E. Kreps. 2013. “The Foreign Policy Consequences of Trade: Chinas Commercial Relations with Africa and Latin America, 19922006.” The Journal of Politics 75 (2): 357371.
Gehlbach, Scott, and Philip Keefer. 2012. “Private Investment and the Institutionalization of Collective Action in Autocracies: Ruling Parties and Legislatures.” The Journal of Politics 74 (2): 621635.
Gerber, Alan S., Gregory A. Huber, and Ebonya Washington. 2010. “Party Affiliation, Partisanship, and Political Beliefs: A Field Experiment.” American Political Science Review 104 (4): 720744.
Goldstein, Rebecca, and Hye Young You. 2017. “Cities as Lobbyists.” American Journal of Political Science 61 (4): 864876.
Grossman, Guy, Jan H. Pierskalla, and Emma Boswell Dean. 2017. “Government Fragmentation and Public Goods Provision.” The Journal of Politics 79 (3): 823840.
Hager, Anselm, and Hanno Hilbig. 2019. “Do Inheritance Customs Affect Political and Social Inequality?” American Journal of Political Science 63 (4): 758773.
Hager, Anselm, and Krzysztof Krakowski. 2022. “Does State Repression Spark Protests? Evidence from Secret Police Surveillance in Communist Poland.” American Political Science Review 116 (2): 564–79.
Hager, Anselm, Krzysztof Krakowski, and Max Schaub. 2019. “Ethnic Riots and Prosocial Behavior: Evidence from Kyrgyzstan.” American Political Science Review 113 (4): 1029–44.
Healy, Andrew, and Neil Malhotra. 2013. “Childhood Socialization and Political Attitudes: Evidence from a Natural Experiment.” The Journal of Politics 75 (4): 10231037.
Henderson, John, and John Brooks. 2016. “Mediating the Electoral Connection: The Information Effects of Voter Signals on Legislative Behavior.” The Journal of Politics 78 (3): 653–69.
Hong, Ji Yeon, Sunkyoung Park, and Hyunjoo Yang. 2022. “In Strongman We Trust: The Political Legacy of the New Village Movement in South Korea.” American Journal of Political Science.
Johns, Leslie, and Krzysztof J. Pelc. 2016. “Fear of Crowds in World Trade Organization Disputes: Why Dont More Countries Participate?” The Journal of Politics 78 (1): 88104.
Kapoor, Sacha, and Arvind Magesan. 2018. “Independent Candidates and Political Representation in India.” American Political Science Review 112 (3): 678697.
Kim, Jeong Hyun. 2019. “Direct Democracy and Women’s Political Engagement.” American Journal of Political Science 63 (3): 594610.
Kocher, Matthew Adam, Thomas B. Pepinsky, and Stathis N. Kalyvas. 2011. “Aerial Bombing and Counterinsurgency in the Vietnam War.” American Journal of Political Science 55 (2): 201218.
Kriner, Douglas L., and Eric Schickler. 2014. “Investigating the President: Committee Probes and Presidential Approval, 19532006.” The Journal of Politics 76 (2): 521534.
Kuipers, Nicholas, and Alexander Sahn. 2022. “The Representational Consequences of Municipal Civil Service Reform.” American Political Science Review, 1–17.
Laitin, David D., and Rajesh Ramachandran. 2016. “Language Policy and Human Development.” American Political Science Review 110 (3): 457480.
Lei, Zhenhuan, and Junlong Aaron Zhou. 2022. “Private Returns to Public Investment: Political Career Incentives and Infrastructure Investment in China.” The Journal of Politics 84 (1): 455–69.
Lelkes, Yphtach, Gaurav Sood, and Shanto Iyengar. 2017. “The Hostile Audience: The Effect of Access to Broadband Internet on Partisan Affect.” American Journal of Political Science 61 (1): 520.
Lerman, Amy E., Meredith L. Sadin, and Samuel Trachtman. 2017. “Policy Uptake as Political Behavior: Evidence from the Affordable Care Act.” The American Political Science Review 111 (4): 755.
López-Moctezuma, Gabriel, Leonard Wantchekon, Daniel Rubenson, Thomas Fujiwara, and Cecilia Pe Lero. 2020. “Policy Deliberation and Voter Persuasion: Experimental Evidence from an Election in the Philippines.” American Journal of Political Science.
Lorentzen, Peter, Pierre Landry, and John Yasuda. 2014. “Undermining Authoritarian Innovation: The Power of Chinas Industrial Giants.” The Journal of Politics 76 (1): 182194.
McClendon, Gwyneth H. 2014. “Social Esteem and Participation in Contentious Politics: A Field Experiment at an LGBT Pride Rally.” American Journal of Political Science 58 (2): 279290.
Meredith, Marc. 2013. “Exploiting Friends-and-Neighbors to Estimate Coattail Effects.” American Political Science Review, 742765.
Nellis, Gareth, and Niloufer Siddiqui. 2018. “Secular Party Rule and Religious Violence in Pakistan.” The American Political Science Review 112 (1): 49.
Pianzola, Joëlle, Alexander H. Trechsel, Kristjan Vassil, Guido Schwerdt, and R. Michael Alvarez. 2019. “The Impact of Personalized Information on Vote Intention: Evidence from a Randomized Field Experiment.” The Journal of Politics 81 (3): 833847.
Ritter, Emily Hencken, and Courtenay R. Conrad. 2016. “Preventing and Responding to Dissent: The Observational Challenges of Explaining Strategic Repression.” American Political Science Review 110 (1): 8599.
Rueda, Miguel R. 2017. “Small Aggregates, Big Manipulation: Vote Buying Enforcement and Collective Monitoring.” American Journal of Political Science 61 (1): 163177.
Schleiter, Petra, and Margit Tavits. 2016. “The Electoral Benefits of Opportunistic Election Timing.” The Journal of Politics 78 (3): 836850.
Schubiger, Livia Isabella. 2021. “State Violence and Wartime Civilian Agency: Evidence from Peru.” The Journal of Politics 83 (4): 1383–98.
Sexton, Renard, Rachel L. Wellhausen, and Michael G. Findley. 2019. “How Government Reactions to Violence Worsen Social Welfare: Evidence from Peru.” American Journal of Political Science 63 (2): 353367.
Spenkuch, Jörg L., and Philipp Tillmann. 2018. “Elite Influence? Religion and the Electoral Success of the Nazis.” American Journal of Political Science 62 (1): 1936.
Stewart, Megan A., and Yu-Ming Liou. 2017. “Do Good Borders Make Good Rebels? Territorial Control and Civilian Casualties.” The Journal of Politics 79 (1): 284301.
Stokes, Leah C. 2016. “Electoral Backlash Against Climate Policy: A Natural Experiment on Retrospective Voting and Local Resistance to Public Policy.” American Journal of Political Science 60 (4): 958974.
Tajima, Yuhki. 2013. “The Institutional Basis of Intercommunal Order: Evidence from Indonesia’s Democratic Transition.” American Journal of Political Science 57 (1): 104119.
Trounstine, Jessica. 2016. “Segregation and Inequality in Public Goods.” American Journal of Political Science 60 (3): 709725.
Urpelainen, Johannes, and Alice Tianbo Zhang. 2022. “Electoral Backlash or Positive Reinforcement? Wind Power and Congressional Elections in the United States.” The Journal of Politics 84 (3): 1306–21.
Vernby, K. 2013. “Inclusion and Public Policy: Evidence from Swedens Introduction of Noncitizen Suffrage.” American Journal of Political Science 57 (1): 1529.
Webster, Steven W, Elizabeth C Connors, and Betsy Sinclair. 2022. “The Social Consequences of Political Anger.” The Journal of Politics 84 (3): 1292–1305.
West, Emily A. 2017. “Descriptive Representation and Political Efficacy: Evidence from Obama and Clinton.” The Journal of Politics 79 (1): 351355.
Wood, Abby K, and Christian R Grose. 2022. “Campaign Finance Transparency Affects Legislators’ Election Outcomes and Behavior.” American Journal of Political Science 66 (2): 516–34.
Zhu, Boliang. 2017. “MNCs, Rents, and Corruption: Evidence from China.” American Journal of Political Science 61 (1): 8499.
Ziaja, Sebastian. 2020. “More Donors, More Democracy.” The Journal of Politics 82 (2): 433447.