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Abstract
Instrumental variable (IV) strategies are widely used in political science to establish causal relationships, but
the identifying assumptions required by an IV design are demanding, and assessing their validity remains
challenging. In this paper, we replicate 67 articles published in three top political science journals from 2010-
2022 and identify several concerning patterns. First, researchers o�en overestimate the strength of their in-
struments due to non-i.i.d. error structures such as clustering. Second, IV estimates are o�en highly uncer-
tain, and the commonly used t -test for two-stage-least-squares (2SLS) estimates frequently underestimate
the uncertainties. Third, in most replicated studies, 2SLS estimates are significantly larger than ordinary-
least-squares estimates, and their ratio is inversely related to the strength of the instrument in observational
studies—a pattern not observed in experimental ones—suggesting potential violations of unconfoundedness
or the exclusion restriction in the former. We provide a checklist and so�ware to help researchers avoid these
pitfalls and improve their practice.

Keywords: instrumental variables, two-stage-least-squares, replications, weak instruments, unconfounded-
ness, exclusion restriction, publication bias, meta analysis

1 Introduction
The instrumental variable (IV) approach is a widely used empirical method in the social sciences,
including political science, for establishing causal relationships. It is o�en used when selection on
observables is implausible, experimentation is infeasible or unethical, and rule-based assignments
that allow for sharp regression-discontinuity (RD) designs are unavailable. In recent years, there has
been a growing number of articles published in top political science journals, such as the American
Political Science Review (APSR), American Journal of Political Science (AJPS), and Journal of Politics
(JOP), that use IV as a primary causal identification strategy. This trend can be traced back to the
publication of Mostly Harmless Econometrics (Angrist and Pischke 2009), which popularized the
modern interpretation of IV designs, and Sovey and Green (2011), which clarifies the assumptions
required by an IV design and provides a useful checklist for political scientists.

Despite its popularity, the IV approach has faced scrutiny from researchers who note that two-
stage least-squares (2SLS) estimates are o�en much larger in magnitude than “naïve” ordinary-least-
squares (OLS) estimates, even when the main concern with the latter is upward omitted-variables
bias.1 Others have raised concerns about the validity of the commonly used inferential method for

1. For example, in the 2016 National Bureau of Economic Research–Political Economy Meeting, following a presentation
of a study using an IV approach, the late political economist Alberto Alesina asked the audience: “How come 2SLS estimates
are always five times bigger than OLS estimates in political economy?” We dedicate this paper to him for his seminal
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Figure 1. IV studies published in the APSR, AJPS, and JOP. Our criteria rule out IV models appearing in the
online appendix only, in dynamic panel settings, with multiple endogenous variables, and with nonlinear link
functions. Non-replicability is primarily due to a lack of data and/or coding errors.

2SLS estimation (e.g. Lee et al. 2022; Young 2022).
These observations motivate our systematic examination of the use of IVs in the empirical

political science literature. We set out to replicate all studies published in the APSR, AJPS, and
JOP during the past thirteen years (2010-2022) that use an IV design with a single endogenous
variable as one of the main identification strategies.2 Out of 114 articles meeting this criterion, 71
have complete replication materials online, which is concerning in itself. We successfully replicated
at least one primary IV result in 67 out of the remaining 71 articles. Among the 67 articles, three
articles feature two distinct IV designs, each yielding two separate replicable IV results.

Using data from these 70 IV designs, we conduct a programmatic replication exercise and find
three troubling patterns. First, a significant number of IV designs in political science overestimate
the first-stage partial F -statistic by failing to adjust standard errors (SEs) for factors such as het-
eroskedasticity, serial correlation, or clustering structure. Using the e�ective F -statistic (Olea and
Pflueger 2013), we find that at least 11% of the published IV studies rely on what econometricians
call “weak instruments,” the consequences of which have been well-documented in the literature.
See Andrews, Stock, and Sun (2019) for a comprehensive review.

Second, obtaining valid statistical inferences for IV estimates remains challenging. Almost
all studies we have replicated rely on t -tests for the 2SLS estimates based on analytic SEs and
traditional critical values (such as 1.96 for statistical significance at the 5% level). Using analytic SEs,
IV estimates are already shown to be much more imprecise than OLS estimates. When employing
bootstrapping procedures, the AR test, or the t F procedure—an F -statistic-dependent t -test (Lee
et al. 2022)—for hypothesis testing, we find that 17-35% of the designs cannot reject the null
hypothesis of no e�ect at the 5% level. In contrast, only 10% of studies based on originally reported
SEs or p-values fail to reject the null hypothesis. This discrepancy suggests that many studies may
have underestimated the uncertainties associated with their 2SLS estimates.

What is even more concerning is that an IV approach can produce larger biases than OLS when
weak instruments amplify biases due to failures of IVs’ unconfoundedness or exclusion restrictions.
We observe that in 68 out of the 70 designs (97%), the 2SLS estimates have a larger magnitude
than the naïve OLS estimates obtained from regressing the outcome on potentially endogenous
treatment variables and covariates; 24 of these (34%) are at least five times larger. This starkly

contributions to the field of political economy.
2. Replication data and code are available at https://doi.org/10.7910/DVN/MM5THZ (Lal et al. 2024). Focusing on design

with a single endogenous variable allows us to calculate the first-stage correlation coe�icient (or R 2) and apply tools such
as the Anderson-Rubin (AR) test and the t F test (when there is only a single instrument). Moreover, we find it di�icult to
justify the exclusion restriction in a multiple-treatment-multiple-instrument setting in the first place.
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contrasts with the common rationale for using IV, which is to mitigate the upward bias in treatment
e�ect estimates from OLS. Moreover, we find the ratio between the magnitudes of the 2SLS and OLS
estimates is strongly negatively correlated with the strength of the first stage among studies that
use non-experimental instruments, and the relationship is almost nonexistent among experimental
studies. While factors such as heterogeneous treatment e�ects and measurement error might be at
play, we contend that this phenomenon primarily stems from a combination of weak instruments
and the failure of unconfoundedness or the exclusion restriction. Intuitively, because the 2SLS
estimator is a ratio, an inflated numerator from invalid instruments paired with a small denominator
due to a weak first stage leads to a disproportionately large estimate. Publication bias and selective
reporting exacerbate this issue.

What do these findings imply for IV studies in political science? First, the traditional F -tests for IV
strength, particularly when using classic analytic SEs, o�en mask the presence of weak instruments.
Second, when operating with these weak instruments, particularly in over-identified scenarios,
traditional t -tests do not adequately represent the considerable uncertainty surrounding the 2SLS
estimates, paving the way for selective reporting and publication bias. Last but not least, many
2SLS estimates likely bear significant biases due to violations of unconfoundedness or the exclusion
restriction, and weak instruments further exacerbate these biases. While we cannot pinpoint
exactly which estimates are problematic, these issues seem to be pervasive across observational IV
studies. The objective of this paper, however, is not to discredit existing IV research or dissuade
scholars from using IVs. On the contrary, our intent is to caution researchers against the pitfalls of
ad-hoc justifications for IVs in observational research and provide constructive recommendations
for future practices. These suggestions include accurately quantifying the strength of instruments,
conducting valid inference for IV estimates, as well as implementing additional validation exercises,
such as placebo tests, to bolster the identifying assumptions.

Our work builds on a growing literature evaluating IV strategies in social sciences and o�ering
methods to improve empirical practice. Notable studies include Young (2022), which finds IV
estimates to be more sensitive to outliers and conventional t -tests to understate uncertainties;
Jiang (2017), which observes larger IV estimates in finance journals and attributed this to exclusion
restriction violations and weak instruments; Mellon (2023), which emphasizes the vulnerability of
weather instruments; Dieterle and Snell (2016), which develops a quadratic over-identification test
and discovers significant non-linearities in the first stage regression; Felton and Stewart (2022),
which finds unstated assumptions and a lack of weak-instrument robust tests in top sociology
journals; and Cinelli and Hazlett (2022), which proposes a sensitivity analysis for IV designs in an
omitted variable bias framework. This study is the first comprehensive replication e�ort focusing on
IV designs in political science and uses data to shed light on the consequences of weak instruments
interacting with failures of unconfoundedness or the exclusion restriction.

2 Theoretical Refresher
In this section, we o�er a brief overview of the IV approach, including the setup, the key assumptions,
and the 2SLS estimator. We then discuss potential pitfalls and survey several inferential methods.
To cover the vast majority of IV studies in political science, we adopt a traditional constant treatment
e�ect approach, which imposes a set of parametric assumptions. For example, of our replication
sample, 51 designs (73%) employ continuous treatment variables, and 49 (70%) use continuous IVs.
Most of these studies make no reference to treatment e�ect heterogeneity and are ill-suited for the
local average treatment e�ect framework (Angrist, Imbens, and Rubin 1996).

Apart from the canonical use of IVs in addressing non-compliance in experimental studies, we
observe that in the majority of the articles we review, researchers use IVs to establish causality
between a single treatment variable d and an outcome variable y in observational settings. The
basic idea of this approach is to use a vector of instruments z to isolate “exogenous” variation in d
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(i.e., the variation in d that is not related to potential confounders) and estimate its causal e�ect on
y . For simplicity, we choose not to include any additional exogenous covariates in our discussion.
This is without loss of generality because, by the Frisch-Waugh-Lovell theorem, we can remove
these variables by performing a regression of y , d , and each component of z on the controls and
then proceeding with our analysis using the residuals instead.

2.1 Identification and Estimation
Imposing a set of parametric assumptions, we define a system of simultaneous equations:

Structural equation: y = τ0 + τd + ε (2.1)
First-stage equation: d = π0 + π

′z + ν (2.2)

in which y is the outcome variable; d is a scalar treatment variable; z is a vector of instruments
for d ; and τ captures the (constant) treatment e�ect and is the key quantity of interest. The error
terms ε and ν may be correlated. The endogeneity problem for τ in Equation (2.1) arises when d
and ε are correlated, which renders τ̂OLS from a naïve OLS regression of y on d inconsistent. This
may be due to several reasons: (1) unmeasured omitted variables correlated with both y and d ; (2)
measurement error in d , or (3) simultaneity or reverse causality, which means y may also a�ect d .
Substituting d in Equation (2.1) using Equation (2.2), we have the reduced form equation:

Reduced form: y = (α + τπ0)︸      ︷︷      ︸
γ0

+ (τπ) ′︸︷︷︸
γ′

z + (τν + ε). (2.3)

Substitution establishes that γ = τπ, rearranging yields τ = γ
π (assuming a single instrument, but

the intuition carries over to cases with multiple instruments). The IV estimate, therefore, is the ratio
of the reduced-form and first-stage coe�icients. To identify τ , we make the following assumptions
(Greene 2003, Chapter 12).

Assumption 1 (Relevance) π , 0. This assumption requires that the IVs can predict the treatment
variable, and is therefore equivalently stated as d 6⊥⊥ z .

Assumption 2 (Exogeneity: unconfoundedness & the exclusion restriction) Å[ε] = 0 and
Cov(z , ε) = 0. This assumption is satisfied when unconfoundedness (random or quasi-random as-
signment of z ) and the exclusion restriction (no direct e�ect of z on y beyond d ) are met.

Conceptually, unconfoundedness and the exclusion restriction are two distinct assumptions and
should be justified separately in a research design. However, because violations of either assump-
tion lead to the failure of the 2SLS moment condition, Å[zε] = 0, and produce observationally
equivalent outcomes, we consider both to be integral components of Assumption 2.

Under Assumptions 1 and 2, the 2SLS estimator is shown to be consistent for the structural
parameter τ . Consider a sample of N observations. We can write d = (d1, d2, · · · , dN ) ′ and y =

(y1, y2, · · · , yN ) ′ as (N × 1) vectors of the treatment and outcome data, and z = (z1, z2, · · · , zN ) ′
as an (N × pz )matrix of instruments in which pz is the number of instruments. The 2SLS estimator
is written as follows:

τ̂2SLS = (d′Pzd)−1 d′Pz y (2.4)

in which Pz = z (z′z)−1 z′ is the hat-maker matrix from the first stage which projects the endoge-
nous treatment variable d into the column space of z, thereby in expectation preserving only the
exogenous variation in d that is uncorrelated with ε. This formula permits the use of multiple
instruments, in which case the model is said to be “overidentified.” The 2SLS estimator belongs
to a class of generalized method of moments (GMM) estimators taking advantage of the moment
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conditionÅ[zε] = 0, including the two-step GMM (Hansen 1982) and limited information maximum
likelihood (LIML) estimators (Anderson, Kunitomo, and Sawa 1982). We use the 2SLS estimator
throughout the replication exercise because of its simplicity and because every single paper in our
replication sample uses it in at least one specification.

When the model is exactly identified, i.e., the number of treatment variables equals the number
of instruments, the 2SLS estimator can be simplified as the IV estimator: τ̂2SLS = τ̂IV = (z′d)−1 z′y.
In the case of one instrument and one treatment, the 2SLS estimator can also be written as a ratio
of two sample covariances: τ̂2SLS = τ̂IV = γ̂

π̂ = Ĉov(y ,z )
Ĉov(d ,z )

, which illustrates that the 2SLS estimator is
a ratio between reduced-form and first-stage coe�icients in this special case. This further simplifies
to a ratio of the di�erences in means when z is binary, which is called a Wald estimator.

2.2 Potential Pitfalls in Implementing an IV Strategy
The challenges with 2SLS estimation and inference are mostly due to violations of Assumptions 1
and 2. Such violations can result in (1) significant uncertainties around 2SLS estimates and size
distortion for t -tests due to weak instruments even when the exogeneity assumption is satisfied; and
(2) potentially larger biases in 2SLS estimates compared to OLS estimates when both assumptions
are violated.

Inferential problem due to weak instruments. Since the IV coe�icient is a ratio, the weak in-
strument problem is a “divide-by-zero” problem, which arises when Cov(z , d ) ≈ 0 (i.e., when
the relevance assumption is violated). The instability of ratio estimators like τ̂2SLS when the de-
nominator is approximately zero has been extensively studied going back to Fieller (1954). The
conventional wisdom in the past two decades has been that the first-stage partial F -statistic needs
to be bigger than 10, and it should be clearly reported (Staiger and Stock 1997). The cuto�, as
a rule of thumb, is chosen based on simulation results to meet two criteria under i.i.d. errors:
(1) in the worst case, the bias of the 2SLS estimator does not exceed 10% of the bias of the OLS
estimator, and (2) a t -test based on the 2SLS estimator with a size of 5% does not lead to size
over 15%. These problems are further exacerbated in settings where units belong to clusters with
strong within-cluster correlation, where a small number of observations or clusters may heavily
influence estimated results (Young 2022). Recently, however, Angrist and Kolesár (2023) argue that
the conventional inference strategies are reliable in just-identified settings with independent errors.
The weak instrument issue is indeed most concerning in heavily over-identified scenarios.

The literature has discussed at least three issues caused by weak instruments when the exogene-
ity assumption is satisfied. First, under i.i.d. errors, a weak first stage exacerbates the finite-sample
bias of the 2SLS estimator toward the inconsistent OLS estimator, thereby reproducing the endo-
geneity problem that an IV design was meant to solve (Staiger and Stock 1997). Additionally, when
the first stage is weak, the 2SLS estimator may not have a mean; its median is centered around
the OLS coe�icient (Hirano and Porter 2015). Second, the 2SLS estimates become very imprecise.
To illustrate, a commonly used variance estimator for τ̂IV is Ö̂(τ̂IV ) ≈ σ̂2/(∑N

i=1 (di − d )2R 2
dz ) =

Ö̂(τ̂OLS )/R 2
dz , in which σ̂2 is a variance estimator for the error term and R 2

dz is the first stage R 2.
Ö̂(τ̂IV ) is generally larger than Ö̂(τ̂OLS ) and increasing in 1/R 2

dz . A third and related issue is that
the t -tests are of the wrong size and the t -statistics do not follow a t -distribution (Nelson and Starz
1990). This is because the distribution of τ̂ is derived from its linear approximation of τ̂ in (γ̂, π̂),
wherein normality of the two OLS coe�icients implies the normality of their ratio. However, this
normal approximation breaks down when π̂ ≈ 0. Moreover, this approximation failure cannot
generally be rectified by bootstrapping (Andrews and Guggenberger 2009); Young (2022) argues that
it nevertheless allows for improved inference when outliers are present. Overall, valid IV inference
relies crucially on strong IVs.

Generally, there are two approaches to conducting inference in an IV design: pretesting and
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direct testing. The pretesting approach involves using an F -statistic to test the first stage strength,
and if it exceeds a certain threshold (e.g., F > 10), proceeding to test the null hypothesis about the
treatment e�ect (e.g., τ = 0). Nearly all reviewed studies employ this approach. The direct testing
approach, in contrast, does not rely on passing a pretest. We examine four inferential methods for
IV designs, with the first three related to pretesting and the last one being a direct test.

First, Olea and Pflueger (2013) propose the e�ective F -statistic for both just-identified and
over-identified settings and accommodates robust or cluster-robust SEs. The e�ective F is a scaled
version of the first-stageF -statistic and is computed asFE� = π̂ ′Q̂ZZπ̂/tr(Σ̂ππQ̂ZZ), where Σ̂ππ is the
variance-covariance matrix of the first stage regression, and Q̂ZZ = 1

N

∑N
i=1 zi z

′
i . In just-identified

cases, FE� is the same as an F -statistic based on robust or cluster-robust SEs. The authors derive
the critical values for FE� and note that the statistic and corresponding critical values are identical
to the better-known robust F -statistic π̂Σ̂−1ππ π̂ and corresponding Stock and Yogo (2005) critical
values. FE� > 10 is shown to be a reasonable rule of thumb under heteroskedasticity in simulations
(Olea and Pflueger 2013; Andrews, Stock, and Sun 2019).

Second, Young (2022) recommends researchers report two types of bootstrap confidence in-
tervals (CIs), bootstrap-c and bootstrap-t, for τ̂2SLS under non-i.i.d. errors with outliers, which is
common in social science settings. They involve B replications of the following procedure: (1)
sample n triplets (y ∗i , d

∗
i , z
∗
i ) independently and with replacement from the original sample (with

appropriate modifications for clustered dependence) and (2) on each replication, compute the 2SLS
coe�icient and SE, as well as the corresponding test statistic t ∗ = τ̂∗2SLS/ŜE(τ̂∗2SLS). The bootstrap-
c method calculates the CIs by taking the α/2 and (1 − α/2) percentiles of the bootstrapped
2SLS coe�icients τ̂∗2SLS, while the bootstrap-t method calculates the percentile-t refined CIs by
plugging in the α/2 and (1 − α/2) percentile of the bootstrapped t statistics into the expression
τ̂2SLS ± t ∗α |1−α ŜE(τ̂∗2SLS). Hall and Horowitz (1996) show that bootstrap-t achieves an asymptotic re-
finement over bootstrap-c. Note that t -tests based on bootstrapped SEs may be overly conservative
(Hahn and Liao 2021) and, hence, are not recommended.

Third, in just-identified single treatment settings, Lee et al. (2022) propose the t F procedure
that smoothly adjusts the t−ratio inference based on the first-stage F -statistic, which improves
upon the ad-hoc screening rule of F > 10. The adjustment factor applied to 2SLS SEs is based
on the first stage t−ratio f̂ := π̂/

√
Ö̂(π̂), with the first stage F̂ = f̂ 2, and relies on the fact that the

distortion from employing the standard 2SLS t -ratio t̂ := τ̂/
√
Ö̂(τ̂) can be quantified in terms of an

F̂ statistic, which gives rise to a set of critical values for a given pair of t̂ and F̂ . The authors also
show that if no adjustment is made to the t -test’s critical value (e.g., using 1.96 as the threshold for
5% statistical significance), a first stage F̂ of 104.7 is required to guarantee a correct size of 5% for a
two-sided t -test for the 2SLS coe�icient.

Finally, where there is one endogenous treatment variable, the AR procedure, which is essen-
tially an F -test on the reduced form, is a direct inferential method robust to weak instruments
(Anderson and Rubin 1949; Chernozhukov and Hansen 2008). Without loss of generality, assume
that we are interested in testing the null hypothesis that τ = 0, which then implies that the re-
duced form coe�icient from regressing y on z is zero, i.e., γ = 0. This motivates the following
procedure: given a set T of potential values for τ̃ , for each value τ̃ , construct ỹ = y − d τ̃ , and
regress ỹ on z to obtain a point estimate γ̃ and (robust, or cluster robust) covariance matrix Ö̃(γ̃),
and construct a Wald statistic W̃s (γ̃) := γ̃ ′Ö̃(γ̃)−1γ̃. Then, the AR CI (or confidence set) is the set of
γ̃ such that W̃s (γ̃) ≤ c (1 − p) where c (1 − p) is the (1 − p)th percentile of the χ2

1 distribution. The
AR test requires no pretesting and is shown to be the uniformly most powerful unbiased test in the
just-identified case (Moreira 2009). It is less commonly used than pretesting procedures possibly
because researchers are more accustomed to using t -tests than F -tests and reporting SEs rather
than CIs. A potential limitation of the AR test is that its CIs can sometimes be empty or disconnected,
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and therefore lack a Bayesian interpretation under uninformative priors.3

Bias amplification and the failure of the exogeneity assumption. When the number of in-
struments is bigger than the number of endogenous treatments, researchers can use an over-
identification test to gauge the plausibility of Assumption 2, the exogeneity assumption (Arellano
2002). However, such a test is o�en underpowered and has bad finite sample properties (David-
son and MacKinnon 2015). In just-identified cases, Assumption 2 is not directly testable. When
combined with weak instruments, even small violations of unconfoundedness or the exclusion
restriction can produce inconsistency. This is because: plim τ̂IV = τ+ Cov(z ,ε)

Cov(z ,d ) . When Cov(z , d ) ≈ 0,
even small violations of exogeneity, i.e., Cov(z , ε) , 0, will enlarge the second term, resulting in
large biases. Thus, the two identifying assumption failures exacerbate each other: having weak
instruments compounds problems from confounding or exclusion restriction violations, and vice
versa. With invalid instruments, it is likely that the asymptotic bias of the 2SLS estimator is much
greater than that of the OLS estimator, i.e.,

��� Cov(z ,ε)
Cov(z ,d )

��� � ���Cov(d ,ε)
Ö[d ]

��� in the single instrument case.4

While the inferential problem can be alleviated by employing alternative inferential methods as
described above, addressing violations of unconfoundedness or the exclusion restriction is more
challenging since it is fundamentally a research design issue that should be tackled at the design
stage. Researchers o�en devote significant e�ort to arguing for unconfoundedness and exclusion
restrictions in their settings. In Section A3 of the SM, we provide an exposition of the zero-first-stage
(ZFS) test (Bound and Jaeger 2000), which is essentially a placebo test on a subsample where
the instrument is expected to be uncorrelated with the treatment, to help researchers gauge the
validity of their instruments. These estimates can then be used to debias the 2SLS estimate using
the methods proposed in Conley, Hansen, and Rossi (2012).

3 Data and Types of Instruments
In this section, we first discuss our case selection criteria and replication sample, which is the focus
of our subsequent analysis. We then describe the types of instruments in the replicable studies.

Data. We examine all empirical articles published in the APSR, AJPS, and JOP from 2010 to 2022
and identify studies that use an IV strategy as one of the main identification strategies, including
articles that use binary or continuous treatments and that use a single or multiple instruments. We
use the following criteria: (1) the discussion of the IV result needs to appear in the main text and
support a main argument in the paper; (2) we consider linear models only; in other words, articles
that use discrete outcome models are excluded from our sample;5 (3) we exclude articles that
include multiple endogenous variables in a single specification (multiple endogenous variables
in separate specifications are included); (4) we exclude articles that use IV or GMM estimators in
a dynamic panel setting because the validity of the instruments (for example, yt−2 a�ects yt−1
but not yt ) is o�en not grounded in theories or substantive knowledge; these applications are
subject to a separate set of empirical issues, and their poor performance has been discussed in
the literature (e.g., Bun and Windmeijer 2010). These criteria result in 30 articles in the APSR, 33
articles in the AJPS, and 51 articles in the JOP. We then strive to find replication materials for
these articles from public data-sharing platforms, such as the Harvard Dataverse, and the authors’

3. We thank Guido Imbens for highlighting this point.
4. We are not the first to make this argument. According to Hahn and Hausman (2005, p. 34): “[T]he empirical finding

that the 2SLS estimate increases compared to the OLS estimate may indicate that the instrument is not orthogonal to the
stochastic disturbance. The resulting bias can be substantial. Indeed, it could exceed the OLS bias, leading to an increase
in the estimated 2SLS coe�icient over the estimated OLS coe�icient.”

5. We expect the issue identified in this paper to be present, if not more pronounced, with nonlinear IVs. With nonlinear
IVs, weak instruments correspond to weak identification in GMM estimations for some or all unknown parameters. Conse-
quently, weak identification results in non-normal distributions even in large samples, rendering conventional IV or GMM
inferences unreliable (Stock, Wright, and Yogo 2002).
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websites. We are able to locate complete replication materials for 76 (62%) articles. However,
code completeness and documentation quality vary widely. Since 2016-2017, data availability has
significantly improved, thanks to new editorial policies that require authors to make replication
materials publicly accessible (Key 2016). Starting in mid-2016 for AJPS and early-2021 for JOP, both
journals introduced a policy requiring third-party verification of full replicability as a prerequisite
for publication, although not all data are made public. We view these measures as significant
advancements.

Table 1. Data availability and replicability of IV articles.

Incomplete Incomplete Replication
#All Articles Data Code Error Replicable

APSR 33 16 0 3 14 (42%)
AJPS 30 3 1 1 25 (83%)
JOP 51 19 3 1 28 (55%)
Total 114 38 4 5 67 (59%)

Using data and code from the replication materials, we set out to replicate the main IV results in
these 76 articles with complete data. Our replicability criterion is simple: As long as we can exactly
replicate one 2SLS point estimate that appears in the paper, we deem the paper replicable. We do
not aim at exactly replicating SEs, z -scores, or level of statistical significance for the 2SLS estimates
because they involve the choice of the inferential method. A�er much e�ort and hundreds of
hours of work, we are able to replicate the main results of 67 articles.6 The low replication rate is
consistent with what is reported in Hainmueller, Mummolo, and Xu (2019) and Chiu et al. (2023).
The main reasons for failures of replication are incomplete data (38 articles), incomplete code
or poor documentation (4 articles), and replication errors (5 articles). Table 1 presents summary
statistics on data availability and replicability of IV articles for each of the three journals. The rest of
this paper focuses on results based on these 67 replicable articles (and 70 IV designs).

Types of instruments. Inspired by Sovey and Green (2011), in Table 2, we summarize the types
of IVs in the replicable designs, although our categories di�er from theirs to reflect changes in the
types of instruments used in the discipline. These categories are ordered based on the strength of
the design, in our view, for an IV study.

The first category is randomized experiments. These articles employ randomization, designed
and conducted by researchers or a third party, and use 2SLS estimation to tackle non-compliance.
With random assignment, our confidence in the exogeneity assumption increases because uncon-
foundedness is guaranteed by design and the direct e�ect of the instrument on the outcome is
easier to rule out than without random assignment. For instance, Alt, Marshall, and Lassen (2016)
use assignment to an information treatment as an instrument for economic beliefs to understand
the relationship between economic expectations and vote choice. Compared to IV articles published
before 2010, the proportion of articles using experiment-generated IVs has increased significantly
(from 2.9% to 17.1%) due to the growing popularity of experiments.

Another category consists of instruments derived from explicit rules on observed covariates,
creating quasi-random variations in the treatment. Sovey and Green (2011) refer to this category as
“Natural Experiment.” We avoid this terminology because it is widely misused and limit this category
to two circumstances: fuzzy RD designs and variation in exposure to policies due to time of birth
or eligibility. For example, Kim (2019) leverages a reform in Sweden that requires municipalities

6. For three articles, we are able to produce the 2SLS estimates with perfectly executable code; however, our replicated
estimates are inconsistent with what was reported in the original studies. We suspect the inconsistencies are caused by
data rescaling or misreporting; hence, we keep them in the sample.
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Table 2. Types of Instruments

Type #Articles Percentage %
Experiment 12 17.1
Rules & policy changes 7 10.0

Fuzzy RD 4 5.7
Change in exposure 3 4.3

Theory 42 60.0
Weather/climate/Geography 13 18.6
Treatment di�usion 2 2.9
History 11 15.7
Others 16 22.9

Econometrics 9 12.9
Interactions/“Bartik” 7 10.0
Lagged treatment 1 1.4
Empirical test 1 1.4

Total 70 100.0

above a population threshold to adopt direct democratic institutions. Dinas (2014) uses eligibility
to vote based on age at the time of an election as an instrument for whether respondents did
vote. While rule-based IVs o�er a pathway to credible causal inference, recent studies have raised
concerns about their implementation, highlighting issues of insu�icient power in many RD designs
(Stommes, Aronow, and Sävje 2023).

The next category is “Theory,” where the authors justify unconfoundedness and the exclusion
restriction using social science theories or substantive knowledge. Over a decade a�er Sovey and
Green (2011)’s survey, it remains the most prevalent category among IV studies in political science,
at around 60%. We divide theory-based IVs into four subcategories: geography/climate/weather,
treatment di�usion, history, and others. First, Many studies in the theory category justify the
choices of their instruments based on geography, climate, or weather conditions. For example,
Zhu (2017) uses weighted geographic closeness as an instrument for the activities of multinational
corporations; Hager and Hilbig (2019) use mean elevation and distance to rivers to instrument
equitable inheritance customs; Henderson and Brooks (2016) use rainfall around Election Day as an
instrument for Democratic vote margins. Relatedly, several studies base their choices on regional
di�usion of treatment. For example, Dube and Naidu (2015) use US military aid to countries outside
Latin America as an instrument for US military aid to Colombia. Dorsch and Maarek (2019) use the
regional share of democracies as an instrument for democratization in a country-year panel.7 Third,
historical instruments derive from past di�erences between units unrelated to current treatment
levels. For example, Vernby (2013) uses historical immigration levels as an instrument for the
current number of non-citizen residents. Finally, several articles rely on a unique instrument based
on theories that we could not place in a category. Dower et al. (2018) use religious polarization as
an instrument for the frequency of unrest and argue that religious polarization could only impact
collective action through its impact on representation in local institutions.

We wish to clarify that our reservations regarding instruments in this category are not primarily

7. While authors o�en argue that weather or geography is quasi-randomly imposed, it is typically harder to claim they
only a�ect the outcome through the treatment variable. For example, Mellon (2023) contends that, while instruments
like rain may be quasi-random, researchers have pinpointed several mechanisms through which it influences key political
outcomes. Betz, Cook, and Hollenbach (2018) argue that spatial instruments are rarely valid because of cross-sectional
interdependence and simultaneity. Inference also presents challenges.

Lal et al. | Political Analysis 9



about theories themselves. As a design-based approach, the IV strategy requires specific and precise
theories about the assignment process of the instruments and the exclusion restriction. We remain
skeptical because many “theory”-driven instruments, in our view, do not genuinely uphold these
assumptions, o�en appearing to be developed in an ad hoc or post hoc manner.

The last category of instruments are based on econometric assumptions. This category includes
what Sovey and Green (2011) call “Lags.” These are econometric transformations of variables argued
to constitute instruments. For example, Lorentzen, Landry, and Yasuda (2014) use a measure of
the independent variable from eight years earlier to mitigate endogeneity concerns. Another
example is shi�-share “Bartik" instruments based. For example, Baccini and Weymouth (2021)
use the interaction between job shares in specific industries and national employment changes to
study the e�ect of manufacturing layo�s on voting. The number of articles relying on econometric
techniques, including flawed empirical tests (such as regressing y on d and z and checking if the
coe�icient of z is significant), has decreased.

4 Replication Procedure and Results
In this section, we describe our replication procedure and report the main findings.

Procedure. For each paper, we select the main IV specification that plays a central role in sup-
porting a main claim in the paper; it is either referred to as the baseline specification or appears in
one of the main tables or figures. Focusing on this specification, our replication procedure involves
the following steps. First, we compute the first-stage partial F -statistic based on (1) classic analytic
SEs, (2) Huber White heteroskedastic-robust SEs, (3) cluster-robust SEs (if applicable and based on
the original specifications), and (4) bootstrapped SEs.8 We also calculate FEff.

We then replicate the original IV result using the 2SLS estimator and apply four di�erent in-
ferential procedures. First, we make inferences based on analytic SEs, including robust SEs or
cluster-robust SEs (if applicable). Additionally, we use two nonparametric bootstrap procedures,
as described in Section 2, bootstrap-c and bootstrap-t. For specifications with only a single instru-
ment, we also employ the t F procedure proposed by Lee et al. (2022), using the 2SLS t -statistic
and first-stage F -statistic based on analytic SEs accounting for the originally specified clustering
structure. Finally, we conduct an AR procedure and record the p-values and CIs.

We record the point estimates, SEs (if applicable), 95% CIs, and p-values for each procedure (the
point estimates fully replicate the reported estimates in the original articles and are the same across
all procedures). In addition, we estimate a naïve OLS model by regressing the outcome variable
on the treatment and covariates, leaving out the instrument. We calculate the ratio between the
magnitudes of the 2SLS and OLS estimates, as well as the ratio of their analytic SEs. We also record
other useful information, such as the number of observations, the number of clusters, the types of
instruments, the methods used to calculate SEs or CIs, and the rationale for each paper’s IV strategy.
Our replication yields the following three main findings.

Finding 1. The first-stage partial F -statistic. Our first finding regards the strengths of the
instruments. To our surprise, among the 70 IV designs, 12 (17%) do not report this crucial statistic
despite its key role in justifying the validity of an IV design. Among the remaining 58 studies that
reportF -statistic, 9 (16%) use classic analytic SEs, thus not adjusting for potential heteroskedasticity

8. They are calculated byFboot = τ̂′2SLS Ö̂boot (τ̂2SLS )
−1
τ̂2SLS /pz , wherepz is the number of IVs and Ö̂boot (τ̂2SLS ) is the

estimated variance-covariance matrix based on a nonparametric bootstrap procedure, in which we repeatedly sample the
rows of the data matrix with replacement. If the data have a clustered structure, we use cluster-bootstrapping instead (Colin
Cameron and Miller 2015; Esarey and Menger 2019). We include Fboot as a reference to the classic F and e�ective F . In
Section A2 of the SM, we compare the five types of F -statistics and show that the e�ective F and F based on bootstrapping
are usually more conservative (smaller) than other F -statistics.
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or clustering structure. In Figure 2, we plot the replicated first-stage partial F -statistic based on the
authors’ original model specifications and choices of variance estimators on the x-axis against (a)
e�ective F -statistic or (b) bootstrapped F -statistic on the y-axis, both on a logarithmic scale.9
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(b) Original F vs. Bootstrapped F

Figure 2. Original vs. e�ective and bootstrapped F . Circles represent applications without a clustering struc-
ture and triangles represent applications with a clustering structure. Studies that do not report F -statistic
are painted in red. The original F -statistics are obtained from the authors’ original model specifications and
choices of variance estimators in the 2SLS regressions. They may di�er from those reported in the articles
because of misreporting.

In the original studies, the authors used various SE estimators, such as classic SEs, robust
SEs, or cluster-robust SEs. As a result, the e�ective F may be larger or smaller than the original
ones. However, a notable feature of Figure 2 is that when a clustering structure exists, the original
F -statistic tends to be larger than the e�ective F or bootstrapped F . When using the e�ective F
as the benchmark, 8 studies (11%) have FEff < 10. This number increases to 12 (17%) when the
bootstrapped F -statistic is used. The median first-stage FEff statistic is higher in experimental
studies compared to non-experimental ones (67.7 versus 53.5). It is well known that failing to cluster
the SEs at appropriate levels or using the analytic cluster-robust SE with too few clusters can lead
to an overstatement of statistical significance (Cameron, Gelbach, and Miller 2008). However, this
problem has received less attention when evaluating IV strength using the F -statistic.10

Finding 2. Inference. Typically, 2SLS estimates have higher uncertainties than OLS estimates.
Figure 3 reveals that the 2SLS estimates in the replication sample are in general much less precise
than their OLS counterparts, with the median ratio of the analytic SEs equal to 3.8. This ratio
decreases as the strength of the instrument, measured by the estimated correlation coe�icient
between the treatment and predicted treatment |ρ̂ (d , d̂ ) |, increases. This is not surprising because
ρ̂ (d , d̂ )2 = R 2

dz , the first-stage partial R -squared. However, one important implication of large

9. We use the replicated F -statistics instead of the reported ones because some authors either do not report or misre-
port their F -statistics (see SM for a comparison between the reported and replicated F -statistics).

10. Abadie et al. (2020) and Abadie et al. (2023) delineate the di�erences between a traditional sampling-based view,
where clustering arises from a two-stage sampling process (sampling clusters, then units within them), and a design-based
view, where clustering stems from the clustered nature of treatment assignment. The key takeaway from both papers is
the importance of clustering at the unit of randomization. They argue that finite-population standard errors, rooted in
the design-based perspective, can be tighter than conventional cluster-robust errors. Given that the exact design is o�en
unknown in many political science observational studies, clustering where the instrument is likely assigned o�ers a more
reliable approach for valid inference. In the replication exercise, however, we cluster SEs according to the levels specified
by the original authors.
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di�erences in SEs is that to achieve comparable levels of statistical significance, 2SLS estimates
o�en need to be at least three times larger than OLS estimates—not to mention that t -testing based
on analytical SEs for 2SLS coe�icients is o�en overly optimistic. This di�erence in precision sets
the stage for potential publication bias and p-hacking.
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Figure 3. Comparison of 2SLS and OLS analytic SEs. Subfigure (a) shows the distribution of the ratio be-
tween ˆSE (τ̂2SLS ) and ˆSE (τ̂OLS ), both obtained analytically. Subfigure (b) plots the relationship between
the absolute values of ρ̂ (d , d̂ ), the estimated correlational coe�icient between d and d̂ , and the ratio (on a
logarithmic scale). In one study, the analytic ˆSE (τ̂2SLS ) is much smaller than ˆSE (τ̂OLS ); we suspect that
the former severely underestimates the true SE of the 2SLS estimate, likely due to a clustering structure.

Next, we compare the reported and replicated p-values for the null hypothesis of no e�ect.
For studies that do not report a p-value, we calculate it based on a standard normal distribution
using the reported point estimates and SEs. The replicated p-values are based on (1) bootstrap-c,
(2) bootstrap-t, and (3) the AR procedure. Since we can exactly replicate the point estimates for
the articles in the replication sample, the di�erences in p-values are the result of the inferential
methods used. Figure 4(a)-(c) plot reported and replicated p-values, from which we observed
two patterns. First, most of the reported p-values are smaller than 0.05 or 0.10, the conventional
thresholds for statistical significance. Second, consistent with Young (2022)’s finding, our replicated
p-values based on the bootstrap methods or AR procedure are usually bigger than the reported
p-value (exceptions are mostly caused by rounding errors), which are primarily based on t statistics
calculated using analytic SEs. Using the AR test, we cannot reject the null hypothesis of no e�ect
at the 5% level in 12 studies (17%), compared with 7 (10%) in the original studies. The number
increases to 13 (19%) and 19 (27%) when we use p-values from the bootstrap-t and -c methods.
Note that very few articles we review utilize inferential procedures specifically designed for weak
instruments, such as the AR test (2 articles), the conditional likelihood-ratio test (Moreira 2003) (1
paper), and confident sets (Mikusheva and Poi 2006) (none).

We also apply the t F procedure to 54 studies that use single IVs using FEff statistics and t
statistics based on robust or cluster-robust SEs. Figures 4(d) shows that 19 studies (35%) are not
statistically significant at the 5% level, and 7 studies (13%) deemed statistically significant when
using the conventional fixed critical values for the t -test become statistically insignificant using
the t F procedure, indicating that overly optimistic critical values due to weak instruments also
contribute to overestimation of statistical power, but not as the primary factor. These results
suggest that both weak instruments and non-i.i.d. errors have contributed to overstatements of
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power in IV studies in political science.
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Figure 4. Alternative inferential methods. In subfigures (a)-(c), we compare original p-values to those from
alternative inferential methods, testing against the null thatτ = 0. Both axes use a square-root scale. Original
p-values are adapted from original articles or calculated using standard-normal approximations of z -scores.
Solid circles represent Arias and Stasavage (2019), where authors argue for a null e�ect using IV strategy.
Bootstrap-c and -t represent percentile methods based on 2SLS estimates and t -statistics, respectively, using
original model specifications. Hollow triangles in subfigure (c) indicate unbounded 95% CIs from the AR test
using the inversion method. Subfigure (d) presents t F procedure results from 54 single instrument designs.
Green and red dots represent studies remaining statistically significant at the 5% level using the t F procedure
and those that don’t, respectively. Subfigures (a)-(c) are inspired by Figure 3 in Young (2022), and subfigure (d)
by Figure 3 in Lee et al. (2022).

Finding 3. 2SLS-OLS discrepancy. Finally, we investigate the relationship between the 2SLS
estimates and naïve OLS estimates. In Figure 5(a), we plot the 2SLS coe�icients against the OLS
coe�icients, both normalized using reported OLS SEs. The shaded area indicates the range beyond
which the OLS estimates are statistically significant at the 5% level. It shows that for most studies in
our sample, the 2SLS estimates and OLS estimates share the same direction and that the magnitudes
of the former are o�en much larger than those of the latter. Figure 5(b) plots the distribution of
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the ratio between the 2SLS and OLS estimates (in absolute terms). The mean and median of the
absolute ratios are 12.4 and 3.4, respectively. In fact, in all but two designs (97%), the 2SLS estimates
are bigger than the OLS estimates, consistent with Jiang (2017)’s finding based on finance research.
While it is theoretically possible for most OLS estimates in our sample to be biased towards zero,
only 21% of the studies have researchers expressing their belief in downward biases of the OLS
estimates. Meanwhile, 40% of the studies consider the OLS results to be their main findings. The
fact that researchers use IV designs as robustness checks for OLS estimates due to concerns of
upward biases is apparently at odds with the significantly larger magnitudes of the 2SLS estimates.

−40 −20 0 20 40

−
40

−
20

0
20

40

τ̂ 2
S

LS
S

Ê
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Figure 5. Relationship between OLS and 2SLS estimates. In subfigure (a), both axes are normalized by re-
ported OLS SE estimates with the gray band representing the [−1.96, 1.96] interval. Subfigure (b) displays
a histogram of the logarithmic magnitudes of the ratio between reported 2SLS and OLS coe�icients. Subfig-
ures (c) and (d) plot the relationship between |ρ̂ (d , d̂ ) | and the ratio of 2SLS and OLS estimates. Gray and red
circles represent observational and experimental studies, respectively. Subfigure (d) highlights studies with
statistically significant OLS results at the 5% level, claimed as part of the main findings.

In Figure 5(c), we further explore whether the 2SLS-OLS discrepancy is related to IV strength,
measured by |ρ̂ (d , d̂ ) |. We find a strong negative correlation between |τ̂2SLS/τ̂OLS | and |ρ̂ (d , d̂ ) |
among studies using non-experimental instruments (grey dots). The adjusted R 2 is 0.264, with
p = 0.000. However, the relationship is much weaker among studies using experiment-generated
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instruments (red dots). The adjusted R 2 is −0.014 with p = 0.378. At first glance, this result may
seem mechanical: as the correlation between d and d̂ increases, the 2SLS estimates naturally
converge to the OLS estimates. However, the properties of the 2SLS estimator under the identifying
assumptions do not predict the negative relationship (we confirm it in simulations in the SM), and
such a relationship is not found in experimental studies. In Figure 5(d), we limit our focus to the
subsample in which the OLS estimates are statistically significant at the 5% level and researchers
accept them as (part of) the main findings, and the strong negative correlation remains.

Several factors may be contributing to this observed pattern, including (1) failure of the exogene-
ity assumption, (2) publication bias, (3) heterogeneous treatment e�ects, and (4) measurement
error in d . As noted earlier, biases originating from endogenous IVs or exclusion restriction failures
can be magnified by weak instruments, i.e., |BiasIV |

|BiasOLS | =
��� Cov(z ,ε)Ö[d ]

Cov(d ,ε)Cov(z ,d )

��� = |ρ (z ,ε) |
|ρ (d ,ε) | · |ρ (d ,d̂ ) | � 1. In

addressing large IV-OLS estimate ratios, Hahn and Hausman (2005) suggest two explanations: it
could stem from a bias in OLS or from a bias in IV due to violations of the exogeneity assumption.
Our empirical results, with particularly dubious IV to OLS estimate ratios in non-experimental
studies, seem to align with the latter explanation.

Publication bias may have also played a significant role. As shown in Figure 3, the variance
of IV estimates increase as |ρ̂ (d , d̂ ) | diminishes. If researchers selectively report only statistically
significant results, or if journals have a tendency to publish such findings, it is not surprising that
the discrepancies between IV and OLS estimates widen as the strength of the first stage declines,
as shown in Figure 5(c)-(d). This is because 2SLS estimates o�en need to be substantially larger
than OLS estimates to achieve statistical significance. This phenomenon is known as Type-M bias
and has been discussed in psychology and sociology literature (Gelman and Carlin 2014; Felton
and Stewart 2022). Invalid instruments exacerbate this issue by providing ample opportunities for
generating such large estimates.

Moreover, 30% of the replicated studies in our sample mention heterogeneous treatment e�ects
as a possible explanation for this discrepancy. OLS and 2SLS place di�erent weights on covariate
strata in the sample, and therefore if compliers, those whose treatment status is a�ected by the
instrument, are more responsive to the treatment than the rest of the units in the sample, we might
see diverging OLS and 2SLS estimates. Under the assumption that the exclusion restriction holds,
this gap can be decomposed into covariate weight di�erence, treatment-level weight di�erence,
and endogeneity bias components using the procedure developed in Ishimaru (2021). In the SM, we
investigate this possibility and find that it is highly unlikely that heterogeneous treatment e�ects
alone can explain the di�erence in magnitudes between 2SLS and OLS estimates we observe in the
replication data, i.e., the variance in treatment e�ects needed for this gap is implausibly large.

Finally, IV designs can correct for downward biases due to measurement errors in d , resulting
in |τ̂2SLS/τ̂OLS | > 1. If the measurement error is large, this can weaken the relationship between
d and d̂ , producing a negative correlation. We find it an unlikely explanation because only four
articles (6%) attribute their use of IV to measurement errors, and the negative correlation is even
stronger when we focus solely on studies where OLS estimates are statistically significant and
regarded as the main findings.

In Table 3, we present the main findings from our replication exercise. Observational studies,
compared to experimental counterparts, generally have weaker first stages, o�en display larger
increases in p-values when more robust inferential methods are used, and demonstrate bigger
discrepancies between the 2SLS and OLS estimates. Based on these findings, we contend that
a significant proportion of IV results based on observational data in political science either lack
credibility or yield estimates that are too imprecise to o�er insights beyond those provided by OLS
regressions.
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Table 3. Summary of replication results

Experimental (12) Observational (58) All (70)
Panel A: First-Stage F -statistic

Unreported .333 .138 .171
E�ective F < 10 .083 .121 .114
Bootstrapped F < 10 .167 .172 .171
Median e�ective F 67.7 53.5 53.5

Panel B: Inference for 2SLS Estimates
Original p > 0.05 .250 .069 .100
AR p > 0.05 .417 .121 .171
Bootstrap-c p > 0.05 .417 .276 .300
Bootstrap-t p > 0.05 .333 .155 .186
t F procedure p > 0.05 .400 .341 .352

Panel C: 2SLS-OLS Relationship
si gn (τ̂2SLS ) = si gn (τ̂OLS ) 1.00 .914 .929
|τ̂2SLS /τ̂OLS | > 1 1.00 .966 .971
|τ̂2SLS /τ̂OLS | > 5 .250 .362 .343
|τ̂2SLS /τ̂OLS | > 10 .000 .207 .171

Median |τ̂2SLS /τ̂OLS | 2.19 3.61 3.40

5 Recommendations
IV designs in experimental and observational studies di�er fundamentally. In randomized exper-
iments, the instruments’ unconfoundedness is ensured by design, and researchers can address
possible exclusion restriction violations at the design stage, e.g., by testing potential design e�ects
through randomization (Gerber and Green 2012, pp. 140-141). Practices like power analysis, placebo
tests, and preregistration also help reduce the improper use of IVs. In contrast, observational IV
designs based on “natural experiments” require detailed knowledge of the assignment mechanism,
making them more complex and prone to issues (Sekhon and Titiunik 2012).

Our findings suggest that using an IV strategy in observational settings is extremely challenging
due to several reasons. First, truly random and strong instruments are rare and di�icult to find.
This is mainly because neither unconfoundedness nor the exclusion restriction is guaranteed by
design, placing a greater burden of proof on researchers for the exogeneity assumption. Moreover,
conducting placebo tests like the ZFS test for the exclusion restriction a�er data collection is not
always feasible. Finally, increasing the sample size to achieve su�icient statistical power is o�en
impractical. To prevent misuse of IVs in observational studies, we provide a checklist for researchers
to consider when applying or contemplating an IV strategy with one endogenous treatment variable:

Design
• Prior to using an IV strategy, consider how selection bias may a�ect treatment e�ect estimates

obtained through OLS. If the main concern is underestimating an already statistically significant
treatment e�ect, an IV strategy may be unnecessary.

• During the research design phase, consider whether the chosen instrument can realistically create
random or quasi-random variations in treatment assignment while remaining excluded from the
outcome equation.
Characterizing the first-stage

• Calculate and report FEff for the first stage, taking into account heteroscedasticity and clustering
structure as needed. However, do not discard a design simply because FEff < 10.
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Figure 6. Replicated OLS and 2SLS estimates with 95% CIs (Rueda 2017, Table 5 column 1). The outcome is
citizens’ reports of voting buying. The treatment is the actual polling place size. The instrument is the size of
the polling station predicted by the rules limiting the voters per polling station. The magnitude of the 2SLS
estimate is slightly larger than that of the OLS estimate. Similar figures for each of the 70 IV designs are shown
in the SM. This plot is made by ivDiag.

• If both d and z are continuous, we recommend plotting d against its predicted values, d̂ , a�er
accounting for covariates. Alternatively, plot both d and d̂ against specific covariates that serve
as the foundation for the rules used to derive the instruments. These visualizations are useful for
detecting outliers and gaining insights into the sources of exogenous variation.
Hypothesis testing and inference

• Option 1. t -test with FEff pretesting. If FEff < 10, choose Options 2 or 3. Utilize conservative
methods like bootstrap-t and bootstrap-c if outliers or group structures are present.

• Option 2. t F procedure. For single treatment and instrument cases, adjust t -test critical values
based on FEff.

• Option 3. Direct testing. Apply weak-instrument-robust procedures, such as the AR test.
Communicating your findings

• Present OLS and IV estimates alongside CIs from various inferential methods in a graphical format,
like in Figure 6. These CIs may not concur on statistical significance, but they collectively convey
the findings’ robustness to di�erent inferential approaches. In addition, they present the degree
of uncertainty in both OLS and IV estimates in an intuitive manner.

• Remember to report first-stage and reduced-form estimation results, including 95% CIs for coe�i-
cients, as they o�er insight into both instrument strength and statistical power.
Additional diagnostics

• If you expect the OLS results to be upward biased, be concerned if the 2SLS estimator yields much
larger estimates.

• If there is good reason to believe that treatment e�ects on compliers are significantly larger in
magnitude than those on non-compliers, explain this through profiling of these principal strata
(Abadie 2003; Marbach and Hangartner 2020).

• If it is possible to identify “never takers” or a subset of them, conduct a placebo test by estimating
the e�ect of the instruments on the outcome in this ZFS sample. Using results from the ZFS test,
obtain local-to-zero IV estimates and CIs and compare them to the original estimates. Section A3
of the SM provides detailed explanations and an empirical example.

• Conduct a sensitivity analysis as proposed by Cinelli and Hazlett (2022).

We provide an R package, ivDiag, to implement our recommended procedures. Stata tutorials
for carrying out these procedures are also available on the corresponding author’s website. Our aim
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is to address concerns regarding IVs in social science research and improve the quality of estimation
and inference, especially for non-experimental IV designs.
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