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This Lecture

• The interactive fixed effect model

• The matrix completion method

• Diagnostics

• Bayesian multi-factor models

1



Link with Synthetic Control

• Recall that ADH (2010) use a factor-augmented model to motivate the synthetic

control method:

Yit(0) = θ′tZi + ξt + λ′i ft + εit

• What if we actually estimate the model using observations under the control

condition only?

• Xu (2017) imports the so-called interactive fixed-effect (IFE) model to a DiD

setting

Yit(0) = X ′itβ + αi + ξt + λ′i ft + εit

• Athey et al. (2021) extend it and introduce the matrix completion method

• Liu, Wang & Xu (2021) put these methods in a general framework — “the

counterfactual estimators”

• No negative weighting!

• Limitations: needs large T and N; model dependency
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Basic Idea

• In a panel setting, treat Y (1) as missing data

• Predict Y (0) based on an outcome model

• (Use pre-treatment data for model selection)

• Estimate ATT by averaging differences between Y (1) and Ŷ (0)
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Basic Idea

ÂTT s = Ê[τ̂it |Di,t−s = 0,Di,t−s+1 = Di,t−s+2 = · · · = Dit = 1︸ ︷︷ ︸
s periods

,∀i ∈ T ].
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A New Plot for “Dynamic Treatment Effects”
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A New Plot for “Dynamic Treatment Effects”
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Current Practice: Angrist & Pischke Chapter 5
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Model-based Counterfactual Estimators

A model-based counterfactual estimator proceeds in the following steps:

• Step 1. Train the model using observations under the control condition (Dit = 0).

• Step 2. Predict the counterfactual outcome Ŷit(0) for each observation under the

treatment condition (Dit = 1) and obtain an estimate of the individual treatment

effect: τ̂it = Yit − Ŷit(0).

• Step 3. Generate estimates for the causal quantities of interest

ATT = E[τit |Dit = 1, ∀i ∈ T , ∀t], or

ATTs = E[τit |Di,t−s = 0,Di,t−s+1 = Di,t−s+2 = · · · = Dit = 1︸ ︷︷ ︸
s periods

, ∀i ∈ T ].
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Review of Three Estimators

We review three estimation strategies:

• FEct:

Ŷit(0) = Xit β̂ + α̂i + ξ̂t

• IFEct (Gobillon&Magnac 2016; Xu 2017):

Ŷit(0) = Xit β̂ + λ̂′i F̂t

• Matrix Completion (MC) (Athey et al. 2018):

Ŷit(0) = Xit β̂ + L̂it ,

where matrix {Lit}N×T is a lower-rank matrix approximation of {Y (0)}N×T with

missing values

Remarks:

• DiD is a special case of FEct

• Both IFEct and MC are estimated via iterative algorithms

• Cross-validation to choose the tuning parameter
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IFEct

Xu (2017) proposes a three-step approach based on a latent factor model:

Control Yit(0) = X ′itβ + αi + ξt + λ′i ft + εit

Treated Yit(0) = X ′itβ + αi + ξt + λ′i ft + εit (pre)

Yit(1) = X ′itβ + αi + ξt + λ′i ft + εit + τit (post)

1. Expectation-Maximization

(Gobillon & Magnac 2016)
factors: r × T
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Election Day Registration (EDR) and Voter Turnout

Causal inference is a missing data problem.
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Main Results
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Factors and Factor Loadings
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Example: Property Rights and Land Improvement

Sanford (2019)

• Does property rights lead to improved land quality?

• “Experiment”: giving peasants in Borgou, Benin land titles

• Use satellite (remote sensing) data to measure land improvement, i.e., switch

from annual crops to perennial crops (bushes and trees)

• Use IFEct to construct counterfactuals
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Original Satellite Images
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Treated and Counterfactual Averages

Pre-treatment Outcome
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Treated and Counterfactual Averages

Post-treatment Outcome (1 Year)
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Treated and Counterfactual Averages

Post-treatment Outcome (4 Years)
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Factors and Loadings
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Geographic Distribution of Heavily-weighted Controls

Bigger number represents higher dissimilarity
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Matrix Completion Methods

AL

CA

DE

IA

IN

LA

ME

MO

NC

NJ

NY

OR

SC

TX

VT

WV

1920 1928 1936 1944 1952 1960 1968 1976 1984 1992 2000 2008
year

ab
b

Treated States (before EDR) Treated States (after EDR) Control States

EDR Reform

• Recall that our main goal is to predict

treated counterfactuals

• Taking advantage of the matrix

structure, matrix completion methods

use non-treated data to achieve this

goal

• The basic idea to find a lower-rank

representation of the matrix to impute

the “missing data”

• Xu (2017) is a special case of this

approach
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Matrix Completion Methods

• Recall in the baseline DiD setup:

Y =

(
Y 0
T ,pre ??

Y 0
C,pre Y 0

C,post

)
• Matrix completion (MC) methods attempt to find a lower-rank representation of

Y, which we call L, that makes predictions of missing values in Y

• Athey et al. (2021) generalize Xu (2017) with different ways of constructing L

• Plus, missingness can be arbitrary → accommodate reversible treatments (note:

strict exogeneity)
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Matrix Completion Methods

• Mathematically,

Yit = Lit + αi + ξt + X ′itβ + εit

in which Lit is an element of L, an (N × T ) matrix

• We need regularization on L because of too many parameters:

min
L

1

#Controls

∑
Dit=0

(Yit − Lit)
2 + λL‖L‖∗

• The nuclear norm ‖.‖∗ generally leads to a low-rank solution for L

‖L‖∗ =

min(N,T )∑
i=1

σi (L)

in which σi (L) represents the i ’th singular values of L
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IFEct vs. MC

• Singular value decomposition of L

LN×T = SN×NΣN×TRT×T

• Difference in how ΣN×T is regularized

IFE MC
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IFEct vs. MC

The pros and cons of IFEct and MC:

• IFEct works better with a small number of strong factors

• MC works better with a large number of weak factors
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Over-fitting of IFEct and MC

When the true DGP is a two-factor IFE model:
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Inferential Methods

• Non-parametric block bootstrap

• sample with replacement across units

• valid when N is large, Ntr
N

is fixed

• A permutation-based test for Sharp Nulls (Chernozhukov et al 2019)

• e.g. Yit(1) = Yit(0), ∀i ∈ T , t > T0i

• randomization over time (by blocks) instead of across units

• valid if T is large, errors are stationary weekly dependent, and estimators are

consistent or stable

• exact if errors are i.i.d.
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Diagnostic Tests



A Simulated Example

Data Generating Process:

• T = 35, N = 200

• Outcome model: a linear interactive fixed effect model with two factors: one

drift process and one white noise.

Yit = τitDit + 5 + 1 · Xit,1 + 3 · Xit,2 + λi1 · f1t + λi2 · f2t + αi + ξt + εit

• Treatment assignment: timing of the treatment correlated with additive and

interactive fixed effect.

• Treatment effects: τi,t>T0i = 0.2(t − T0i ) + eit
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Dynamic Treatment Effects
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Placebo Test

• Drop S periods before the treatment’s onset, and estimate the average treatment

effect in these periods.

• Test whether the average effect is significant

• Robust to model misspecification
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Equivalence Test

• Extension to Hartman and Hidalgo (2018) in a TSCS setting

• H0: |ATT p| > θ vs. H1: |ATTt | ≤ θ

• We calculate the maximal possible θ and compare it with pre-specified threshold:

0.36 ∗ sd(Ỹit |Dit = 0)

• It has more power when the sample size grows larger, and is more likely to reject

the Null (hence, equivalence holds) when a confounder is trivial

• Drawback: setting the threshold requires user discretion
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Equivalence Test

From Hartman and Hidalgo (2018)
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Extension 1. Test for No Pre-Trend

• Drop one pre-treatment period at a time (leave-one-out) and collect the residual

averages

• Test whether the residual averages equal to 0 collectively

• Use both the difference-in-means approach and the equivalence approach

• Can be too lenient for IFE or MC
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Why Not a Wald test?

• A simpler test: conduct an Wald (F ) test on pre-treatment residual averages

• Power issue

• When there exists a small confounders which induces a neglectable bias compared

with the ATT, a Wald test will almost always reject the Null (that equivalence

holds) when there are enough data

• The equivalence test approach avoids this problem
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Why Not a Wald Test?

• There exist a time-varying confounder

• We vary its influence on the bias in the ATT
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Why Not a Wald Test?
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Extension 2. Test for No Carryover Effects

• Drop several periods after the treatment ends

• Test whether the average carryover effect is significant

• Can use both the difference-in-means approach and the equivalence approach
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Hainmueller & Hangatner (2019)

Does indirect democracy benefit immigrant minorities?

• Unit of analysis: 1400 Swiss municipalities from 1991-2009

• Treatment: Indirect (vs. direct) democracy

• Outcome: Naturalization rate
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Hainmueller & Hangatner (2019)
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Fouirnaies and Mutlu-Eren (2015)

Does partisan alignment brings special grant in UK?

• Unit of analysis: 466 local councils from 1992 to 2012

• Treatment: Partisan alignment between locality and central government

• Outcome: Amount of special grant
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EDR on Turnout

FEct

Wald p value: 0.129
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EDR on Turnout

IFEct

Wald p value: 0.728
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EDR on Turnout

MC

Wald p value: 0.644
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Bayesian Multi-Factor Models



Why A Bayesian Approach

• Challenge: Valid inference for individual or average treatment effects in

comparative case studies remains difficult

• Solution: A fully Bayesian approach — theory, estimation, prediction, and

inference

• Key features of Pang, Liu & Xu (2021)

1. Bayesian causal inference: Treated counterfactuals = Missing data (under MNAR)

⇒ Inference based on posterior distributions of imputed counterfactuals

2. Semi-parametric:

A multi-factor state-space model + Stochastic model specification search

3. Dimension reduction:

Dense modeling (factor analysis) + Sparse modeling (Bayesian Lasso)

• Other work:

Carlson (2018); Samartsidis (2020); Kim, Lee & Gupta (2020); Feller et al. (2021)
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Basic Idea: Bayesian Prediction

Like counterfactual estimators, Bayesian causal inference takes three steps:

1. Bayesian Model Search

using MCMC to obtain a model for the non-treated potential outcome:

f (yit(0)|Xit , θit)

2. Bayesian Prediction

for treated counterfactuals based on posterior draws of the parameters and

observed covariates

3. Summarization and Averaging

based on observed treated outcomes and the posterior draws of their

counterfactuals
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Identification Assumptions

1-2 SUTVA & Staggered Adoption

3 Latent Ignorablity (under MNAR):

• Treatment assignment (missingness) is ignorable when we condition on observed

data and an unobserved latent variable U:

Pr(Di |Xi ,Yi (0),Ui ) = Pr(Di |Xi ,Yi (0)obs ,Ui ) = Pr(Di |Xi ,Ui )

4 Feasible Data Extraction:

• Ui can be learned from observed data (X,Y(0)obs)

• U(n×T ) can be approximated by two lower-rank matrices, U = Γ′F in which

F = (f1, ..., fT )

◦ Then we have:

Pr(Y(0)m|D,Y(0)o ,X,U) ∝ Pr(Y(0),X,U)

∝
∫ (∏

f (y(0)mit |Xit ,Ui ,θ)
)

︸ ︷︷ ︸
posterior predictive distribution

×
(∏

f (y(0)oit |Xit ,Ui ,θ)
)

︸ ︷︷ ︸
likelihood

π(θ)dθ
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A Hierarchical Dynamic Factor Model

Assume the following DGP for yit(0)

yit(0) = xitβit + γ′i ft + εit ,

βit= β +αi + ξt

ξt = Φξξt−1 + et ,

ft = Φf ft−1 + νt .

• xit : observed covariates, and could be time-invariant or unit-invariant

• βit : unit-time-specific (individual) relationships between covariates and outcome

• γ′i ft : the latent multifactor term (a.k.a., interactive fixed effects)
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Correlation and Heteroskedasticity

• The reduced and matrix (estimation) form of the model:

yit(0) = Xitβ + Zitαi + Aitξt + ftγi + εit

ξt = Φξξt−1 + et , ft = Φf ft−1 + νt

where Zit , Ait ⊆ Xit (not all covariates have to have varying coefficients)

• Correlated and Heteroskedastic Errors (variance-covariance matrix):

Ωyi = Z′iΣαi Zi + A′iΣξAi + (Fγi )
′Fγi + σ2

εI

• Prior Distributions of all parameters and hyperparameters
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Bayesian Stochastic Model Specification Search

• Dense Modeling + Sparse Modeling

• Dense Modeling: factor analysis for feature extraction and variable aggregation

• Sparse Modeling: Bayesian shrinkage on factors and varying parameters

• Bayesian Lasso and Lasso-like hierarchical shrinkage

• Lasso: min
β

(y − βX)′(y − βX) + λ
∑J

j=1 |βj |

• Bayesian Lasso: Bayesian posterior mode with independent Laplace priors to β is

equivalent to Lasso, and the Laplacian is a Gaussion Scale mixture

• For variable selection on the observed confounders X, Bayesian Lasso is directly

applied on β
βk |τ2

βk
∼ N (0, τ2

βk
), ∀1 ≤ k ≤ p1

τ2
βk
|λβ ∼ Exp(

λ2
β

2
)

λ2
β ∼ G(a1, a2)
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Model Setup
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Bayesian Stochastic Model Searching

• Re-parameterized model:

yit = X′itβ + Z′it(ωα · α̃i ) + A′it(ωξ · ξ̃t) + (ωγ · γ̃i )′ft + εit ,

• A summary of stochastic model searching:

1. β: when βj1 ≈ 0, then covariate Xit,j1 does not have an intercept.

2. αi : when ωαj2
≈ 0, then covariate Zit,j2 does not have a random effect at unit level.

3. ξt : when ωξj3
≈ 0, then covariate Ait,j3 does not have a time-varying effect.

4. ft : when ωγj4 ≈ 0, then the j th4 unobserved factor will not be included.

• In each MCMC iteration, a model is sampled with some covariates (and factors)

included in the model, but the others are virtually zeroed out.
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ADH (2015): The Effect of German Re-Unification

Figure 1: Predicted Counterfactuals
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ADH (2015): The Effect of German Re-Unification

Figure 2: Estimated Treatment Effect
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ADH (2015): A Placebo Test
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Summary

• Compared with existing methods, Bayesian methods provide more interpretable

uncertainty estimates (Bayesian credibility intervals)

• Bayesian model search avoids arbitrary choices of model specifications and

efficient model searching

• Limitations

• Model dependency

• Requires strict exogeneity (albeit conditional on latent factors)

• Requires stationarity of time series data

• Future work: pay more attention to treatment assignment mechanisms; other

modeling choices: e.g., Gaussian process
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