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Today’s Plan

• The synthetic control method: a review

• Alternative algorithms

• Next lecture

• The interactive fixed effect model

• The matrix completion method

• Diagnostics

• Bayesian multi-factor models
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The Synthetic Control Method (SCM)



SCM: Basic Idea

• J + 1 units in periods 1, 2, . . . ,T ; one treated “1”, J controls

• Region “1” is exposed to the intervention after period T0

• We aim to estimate the effect of the intervention on Region “1”
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SCM: Insights

• Athey and Imbens (2016): “[a]rguably the most important innovation in the

policy evaluation literature in the last 15 years.”

• A combo of many innovations

• Take advantage of pre-treatment outcomes

• Use cross-sectional instead of temporal correlations in data

• Construct a convex combination of donors to construct a counterfactual

• Reserve some pre-treatment periods for testing
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Difference-in-Differences (DiD)
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SCM (and Many Extensions)
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Theoretical Justification

Yit = τitDit + θ′tZi + ξt + λ′i ft + εit

or{
Yit(0) = θ′tZi + ξt + λ′i ft + εit

Yit(1) = Y 0
it + τit

• Suppose there are R time-varying signals ft out there

• Each unit (e.g. country, participant) picks up a fixed linear combination of these

signals based on factor loadings λi

• Since these “confounders” are evidenced in the pre-treatment outcomes for both

treated and controls, we can try to use this information to “balance on” these

confounders

• We will discuss the model-based approach later
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Theoretical Justification

{
Yit(0) = θ′tZi + ξt + λ′i ft + εit

Yit(1) = Y 0
it + τit

• Let W = (w2, . . . ,wJ+1)′ with wj ≥ 0 and w2 + · · ·+ wJ+1 = 1.

• Let Ȳ K1
i , . . . , Ȳ KM

i be M > R linear functions of pre-intervention outcomes

• Suppose that we can choose W ∗ such that:

Z1 =
∑J+1

j=2 w∗j Zj , Ȳ k
1 =

∑J+1
j=2 w∗j Ȳ

k
j , k ∈ {K1, . . . ,KM}

• When T0 is large, an approximately unbiased estimator of τ1t is:

τ̂1t = Y1t −
∑J+1

j=2 w∗j Yjt , t ∈ {T0 + 1, . . . ,T}
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Implementation

• Let X1 = (Z1, Ȳ
K1

1 , . . . , Ȳ KM
1 )′ be a (k × 1) vector of pre-intervention

characteristics for the treated and X0, a (k × J) matrix, for the controls.

• The vector W ∗ is chosen to minimize ‖X1 − X0W ‖, subject to our weight
constraints.

• We consider ‖X1 − X0W ‖V =
√

(X1 − X0W )′V (X1 − X0W ), where V is some

(k × k) symmetric and positive semidefinite matrix.

• Various ways to choose V (subjective assessment of predictive power of X ,

regression, minimize MSPE, cross-validation, etc.).
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Example: Proposition 99 on Cigarette Consumption

• In 1988, California first passed comprehensive tobacco control legislation

(cigarette tax, media campaign etc.)

• Using 38 states that had never passed such programs as controls

1970 1975 1980 1985 1990 1995 2000

0
20

40
60

80
10

0
12

0
14

0

year

pe
r−

ca
pi

ta
 c

ig
ar

et
te

 s
al

es
 (

in
 p

ac
ks

)

California
rest of the U.S.

Passage of Proposition 99

Cigarette Consumption: CA and the Rest of the U.S.

9



Example: Proposition 99 on Cigarette Consumption

• In 1988, California first passed comprehensive tobacco control legislation

(cigarette tax, media campaign etc.)

• Using 38 states that had never passed such programs as controls
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Predictor Means: Actual vs. Synthetic California

California Average of

Variables Real Synthetic 38 control states

Ln(GDP per capita) 10.08 9.86 9.86

Percent aged 15-24 17.40 17.40 17.29

Retail price 89.42 89.41 87.27

Beer consumption per capita 24.28 24.20 23.75

Cigarette sales per capita 1988 90.10 91.62 114.20

Cigarette sales per capita 1980 120.20 120.43 136.58

Cigarette sales per capita 1975 127.10 126.99 132.81

Note: All variables except lagged cigarette sales are averaged for the 1980-1988

period (beer consumption is averaged 1984-1988).
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Smoking Gap Between CA and Synthetic CA
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Smoking Gap for CA and 38 Control States

(All States in Donor Pool)
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Smoking Gap for CA and 34 Control States

(Pre-Prop. 99 MSPE ≤ 20 Times Pre-Prop. 99 MSPE for CA)
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Smoking Gap for CA and 29 Control States

(Pre-Treatment MSPE ≤ 5 Times Pre-Treatment MSPE for CA)
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Smoking Gap for CA and 19 Control States

(Pre-Treatment MSPE ≤ 2 Times Pre-Treatment MSPE for CA)
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Ratio Post-Treatment MSPE to Pre-Treatment MSPE

(All 38 States in Donor Pool)
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Limitations

• Algorithmic

• Deal with one treated unit at a time

• Deal with one outcome at a time

• Slow to implement and sometimes difficult to find a solution

• Allow too much user discretion, e.g. cherry-picking Ȳ k
i results in over-rejection

(Ferman et al. 2017)

• Inference

• Permutation inference and sensitivity analysis, (e.g. Hahn and Shi 2016; Firpo et al.

2017; Chernochukov 2017)

• Inflated precision with nonstationary data (Cattaneo et al. 2019)

• Identification

• My opinion: intrinsically, a method based on strict exogeneity (fixed timing)
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Alternative Algorithms



Balancing, Regression, DiD, and SCM (Doudchenko & Imbens 2016)

• Panel methods can be characterized into three broad groups:

• DiD: ∆Y post −∆Y pre

• Matching: on both pre-treatment outcomes and other covariates

• SCM: For each treated unit, a “synthetic control” is constructed as a weighted

average of control units s.t. the weighted average matches pre-treatment outcomes

and covariates

• Doudchenko & Imbens (2016) provide a framework to nest existing approaches

and estimators
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Notation

• N + 1 units observed for T periods, with a subset of treated units (for simplicity,

unit 1) treated from T0 + 1 and onwards

• Treatment : Di,t = 1i=1 ∧ t∈T0+1,...,T

• Potential outcomes for unit 0 define the treatment effect: τ0,t := Y0,t(1)−Y0,t(0)

for t = T0 + 1, . . . ,T

• Observed outcome: Y obs
i,t = Yi,t(Di,t)
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Outcome Matrices

Yobs =

[
Yobs

t, pre Yobs
t, post

Yobs
c, pre Yobs

c, post

]
=

[
Yt, pre(0) Yt, post(1)

Yc, pre(0) Yc, post(0)

]
(N + 1)× T

Y(0) =

[
Yt, pre(0) ?

Yc, pre(0) Yc, post(0)

]
=

[
Yt, pre(0) ?

Yc, pre(0) Yc, post(0)

]

Relative magnitudes of T and N might dictate whether we impute the missing

potential outcome ? using this or this comparison

• N � T0, Y(0) is “tall”, and red comparison becomes appealing relative to blue.

So matching methods are attractive.

• T0 � N, Y(0) is “fat”, and matching becomes infeasible. So it might be easier to

estimate blue dependence structure.

• Finally, if T0 ≈ N, regularization strategy for limiting the number of control units

that enter into the estimation of Y1,T0+1(0) may be important
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Common Structure: Four Constraints

• Focus on last period. Many estimators impute Y1,T (0) with the linear structure

Ŷ1,T (0) = µ+
n∑

i=1

ωi · Y obs
i,T

while differ in how µ and ω are chosen as a function of Yobs
c, post, Yobs

t,pre, Yobs
c, pre

• Impose four constraints

1. No Intercept: µ = 0. Stronger than Parallel trends in DiD.

2. Adding up :
∑n

i=1 ωi = 1. Common to DiD, SCM.

3. Non-negativity: ωi ≥ 0 ∀ i . Ensures uniqueness via ‘coarse’ regularisation +

precision control. Negative weights may improve out-of-sample prediction.

4. Constant Weights: ωi = ω̄ ∀ i

• DiD imposes 2-4;

• SCM imposes 1-3: “convex hull” (no extrapolation)

22



Relaxing the Constraints

• Negative weights

• If treated units are outliers on important covariates, allowing negative weights may

improve fit

• Bias reduction: negative weights increase bias-reduction rate

• When N � T0, (1-3) alone might not result in a unique solution. Choose by

• Matching on pre-treatment outcomes: one good control unit is better than

synthetic one comprised of disparate units

• Constant weights: implicit in DiD

• Given many pairs of (µ, ω), prefer values s.t.

• Synthetic control unit is similar to treated units in terms of lagged outcomes

• Low dispersion of weights

• Few control units with non-zero weights (sparsity)
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Case for Nonconvex or Negative Weights

Hollingsworth and Wing (2020)
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Re-Expressing Existing Methods

DiD

• Assume (2-4)

• Fix ωdid = 1
N

• µ̂did = 1
T0

∑T0
s=1 Y0,s − 1

NT0

∑T0
s=1

∑N
i=1 Yi,s

SCM

• Assume (1-3): convex hull

• For M ×M PSD diagonal matrix V

(ω̂, µ̂) = arg min
ω,µ

{(Xt − µ− ω′X)′V(Xt − µ− ω′X)}

V̂ = arg min
V=diag(v1,...,vM )

{(Yt, pre − ω̂′Yc, pre)′(Yt, pre − ω̂′Yc, pre)}
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Constrained Regression

• Assume (1-3): convex hull

• Controls as regressors

• Solve

ω̂constr = arg min
ω

∑
t≤T0

(Y1t − ω′YCt)2

s.t.
∑
i∈C

ωi = 1 and ωi ≥ 0, ∀i ∈ C

• Limitation: T0 > N
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Best Subset

Hsiao et al. (2012)

• Controls as regressors

• Bottom-up approach: search for the best 1, then the best 2, then the best 3 ...

(greedy)

• Optimize the weights after taking out the intercepts(
µ̂subset , ω̂subset

)
= arg min

µ,ω

∑
t≤T0

(Y1t − µ− ω′YCt)2

s.t.
∑
i∈C

1ωi 6=0 ≤ k

• Weights can be negative and do not need to add up to 1
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The Optimization Problem

Ingredients of objective function

• Balance: difference between pre-treatment outcomes for treated and
linear-combination of pre-treatment outcomes for control

• ‖Yt, pre − µ− ω′Yc, pre‖2
2 = (Yt, pre − µ− ω′Yc, pre)′(Yt, pre − µ− ω′Yc, pre)

• Sparse and small weights:

(µ̂en, ω̂en) = arg min
µ,ω

Q(µ, ω|Yt, pre,Yc, pre;λ, α)

where Q(µ, ω|Yt, pre,Yc, pre;λ, α) = ‖Yt, pre − µ− ω′Yc, pre‖2
2

+ λ

(
1− α

2
‖ω‖2

2 + α‖ω‖1

)

• sparsity : ‖ω‖1

• magnitude: ‖ω‖2

• tuning parameters: λ, α
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Revisiting ADH California smoking example

Model
∑

i ωi µ τ̂ s.e.

Original Synth 1 0 -22.1 16.1

Constrained 1 0 -22.9 12.8

Elastic Net .55 18.5 -26.9 16.8

Best Subset .32 37.6 -31.9 20.3

Diff-in-Diff 1 -14.4 -32.4 18.9
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Example: German Reunification
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What’s Missing? The Balancing Approach

Robbins et al. (2017)

• SCM can be reinterpreted as an algorithm to achieve mean-balancing

min
wC

L(wC)

s.t.
∑
i∈T

qiYi,pre =
∑
j∈C

wjYj,pre

in which qi is the base weight for treated unit i

• A popular choice for the loss function is the opposite of entropy, which is the

Kullback-Leibler divergence between the distributions of the base weights and

solution weights:

L(wC) = −
∑
i∈C

wi log(wi/qi )

• We will revisit this idea in Lecture 4
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Methods Comparison

SCM CstrReg Hsiao ElasNet IPW Bal

Intercept shift X X X (X)

Weights add up to 1 X X X

Non-negative weights X X X X

Allow short T0 X X

Multiple treated units X X

Computational efficiency X X X X X

• Alternatively, we can adopt an outcome model-based approach

• Recall that ADH (2010) use a factor-augmented model to motivate the SCM:

Yit(0) = θ′tZi + ξt + λ′i ft + εit

• What if we take the model more seriously? Next lecture.
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