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What TWFE Assumptions Entail

Strict Exogeneity

Functional Form

Dit ⊥⊥ ϵjs |X1:T, α, ξ1:T, ∀i, j, t, s

Yit = δTWFEDit + X′ itβ + αi + ξt + ϵit

Related work: Blackwell & Glynn (2018); Imai & Kim (2019);  
Athey & Imbens (2022); Liu, Wang & Xu (2022)
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• On treatment assignment 

- Additive unobserved confounding 
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• On interference (SUTVA) 
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• On HTE  

- Constant treatment effect (more to follow)
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• Result: With HTE, TWFE cannot always arrive at some convex combination of individualistic treatment effect when the PT is valid

• Intuition: Treated observations of early adopters serve as controls for treated observations of late adopters, or “forbidden comparison”

• Complexity: How important this issue is depends on many factors 
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• PT violations
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- Are existing results based on TWFE regressions reliable?

- With so many options, what’s the current best practice?

- What are the main challenges of conducting causal panel analysis under parallel trends?

• What we do

- Replicated a main result of 49 top publications in a seven-year span (2017-2023)

- Standardize tools and reanalyze these findings using a large set of new methods

- Provide recommendations to improve practice

• Why large scale replication/reanalysis?

- To understand the relevance of theoretical findings and the challenges in implementing changes 

- To identify researchers' needs and improve scientific practices
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Strong empirical support for <1/3 of the findings

Takeaways

• PT (& research design) is a first-order issue

• Concerns over HTE is valid but seems second-order
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• Cluster-robust SE (98%); few use bootstrapping

• 59% with some graphic inspections 

Do results hold up? 

Yes and No

• Yes — HTE-robust estimators rarely flip signs

• No — PT violations still common 

• No — Insufficient power when HTE-robust estimators used

• No — Few studies survive mild sensitivity analyses

Strong empirical support for <1/3 of the findings

Takeaways

• PT (& research design) is a first-order issue

• Concerns over HTE is valid but seems second-order

• Validation is the key: 

‣ Event-study plots are a minimal requirement

‣ Sensitivity analysis is helpful

• “Robust” DID requires a strong design and a lot of power
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Related Literature

• Review articles: Roth et al. (2023), Xu (2023), Arkhangelsky and Imbens (2023) 

- New diagnostic and estimation strategies not applied to data 

- Difficult to assess their relevance to empirical research  

• Replication studies: Baker et al. (2022)  

- Replicated five economics and finance studies with staggered treatments 

- Focused on the consequence of HTE 
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[roadmap]

• Estimators 
- Review 6 HTE-robust estimators 

- Typology & comparison 

• Data and Procedure 
- Sample 

- Procedure 

• Findings 
- Three examples 

- Overall assessment 

• Recommendations
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Different Estimators Use Different Comparison Groups

DID Extension

Interaction Weighted 
& Stacked DID

CSDID

Staggered
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Different Estimators Use Different Comparison Groups

DID Extension Imputation

Interaction Weighted 
& Stacked DID

CSDID

Staggered

DID multiple/PanelMatch Imputation Method 
DIDimpute, FEct

General
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Callaway & Sant’Anna (2021)

• Comparison group: not-yet-treated (in additional to never treated) 

• “Doubly robust” with covariates

Callaway & Sant’Anna (2021)Sun & Abraham (2021)

A

B

C

D

E

FindingsMotivation Estimators Data & Procedure Recommends 



Stacked DID: Cengiz et al. (2019)
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Stacked DID: Cengiz et al. (2019)
• Duplicate the pure control group for each cohort

• “Stack” on top of each other, align by relative time to treatment onset

• Run saturated regression

• Similar to IW with disproportionate weights
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Imai, Kim & Wang (2021) “PanelMatch”
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Imai, Kim & Wang (2021) “PanelMatch”
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Imai, Kim & Wang (2021) “PanelMatch”

• Match up to  periods before joining (or leaving)a

‣ Match treated  with  for all (i, t) {j : Dis = Djs s ∈ {t − 1,t − 2,…, t − a}}
•DID to estimate dynamic effects for future periods  (up to reversal)l = 1,2,…

• Refine matched set based on covariates Xit

•  (de Chaisemartin and D’Haultfœuille, 2020) is weighted sum of 
PanelMatch estimators for joiners + leavers, 

 (without refinement)

DIDM
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• Fit model for  on controls 

• TWFE: Fixed effects counterfactual estimator 

• Impute  for treated 

• Estimate individual treatment effects  for 
treated 

• Summarize based on  

• Efficient under homoskedasticity (BJS 2023)

Yit(0)

̂Yit(0)

̂δit = Yit − ̂Yit(0)

̂δit

Imputation Methods
Borusyak, Jaravel & Spiess (2023); Liu, Wang & Xu (2022)
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Comparison — Staggered

Imputation Method 
e.g., FEct

PanelMatchDID multiple

Interaction Weighted 
& Stacked DID

CSDID

Original Data

Stacked DID
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HTE-Robust Estimators

DID Extensions 
(2x2 DID as building blocks)

Imputation Methods 
(outcome model w/ FE)

Setting Staggered General General

Estimand ATT ATT for Switchers ATT

Estimator
IW, CSDID, 
Stacked DID PanelMatch, DIDM DIDimpute, FEct

Comparison Group
Never/last/not-

yet-treated Matched set Imputed counterfactual

Key assumption Parallel Trends Parallel Trends Zero Conditional Mean or 
Parallel Trends
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Replication & Reanalysis
Data 
Procedure



The Replication Sample (2017-2023)
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The Replication Sample (2017-2023)

Case selection: 

- Use panel data analysis as a critical piece of evidence 
to support a causal argument 

- Binary treatment 

- A “proper” TWFE (DID) research design 

- Use a DID or TWFE estimator 

- Focus on the authors’ preferred specification
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Case selection: 

- Use panel data analysis as a critical piece of evidence 
to support a causal argument 

- Binary treatment 

- A “proper” TWFE (DID) research design 

- Use a DID or TWFE estimator 

- Focus on the authors’ preferred specification

Journal

APSR

AJPS

JOP

Total

All Linear 
Panel

22

31

49

102

“Proper” 
TWFE

13

21

30

64

Incomplete 
Data

2

3

6

11 
(17.2%)

Error in 
Code

1

3

0

4 
(6.3%)

Replicable

10 
(76.9%)

15 
(71.4%)

24 
(80%)

49 
(76.6%)

FindingsMotivation Estimators Data & Procedure Recommends 



The Replication Sample (2017-2023)

Case selection: 

- Use panel data analysis as a critical piece of evidence 
to support a causal argument 

- Binary treatment 

- A “proper” TWFE (DID) research design  

- Use a DID or TWFE estimator 

- Focus on the authors’ preferred specification
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Common Settings and Practice

General (w/ Reversal)
59%

Staggered DID
24%

Mutiperiod Block DID
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 2×2 DID
6%
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Common Settings and Practice

General (w/ Reversal)
59%

Staggered DID
24%

Mutiperiod Block DID
10%

 2×2 DID
6%

Variance Estimator
Cluster-robust SE or PCSE 48 98%
Clustered bootstrapping 8 16%

Variants in TWFE Specifications
w/ lagged outcomes 8 16%
w/ higher-than-unit-level time trends 5 10%
w/ unit-level time trends 15 30%

Visual Inspection
Group average outcome trajectories 19 39%
Event-study plots 23 47%
Neither 19 39%

FindingsMotivation Estimators Data & Procedure Recommends 

Among 49 Replicable Studies



Common Settings and Practice

General (w/ Reversal)
59%

Staggered DID
24%

Mutiperiod Block DID
10%

 2×2 DID
6%

Variance Estimator
Cluster-robust SE or PCSE 48 98%
Clustered bootstrapping 8 16%

Variants in TWFE Specifications
w/ lagged outcomes 8 16%
w/ higher-than-unit-level time trends 5 10%
w/ unit-level time trends 15 30%

Visual Inspection
Group average outcome trajectories 19 39%
Event-study plots 23 47%
Neither 19 39%

FindingsMotivation Estimators Data & Procedure Recommends 

Among 49 Replicable Studies



Common Settings and Practice

General (w/ Reversal)
59%

Staggered DID
24%

Mutiperiod Block DID
10%

 2×2 DID
6%

Variance Estimator
Cluster-robust SE or PCSE 48 98%
Clustered bootstrapping 8 16%

Variants in TWFE Specifications
w/ lagged outcomes 8 16%
w/ higher-than-unit-level time trends 5 10%
w/ unit-level time trends 15 30%

Visual Inspection
Group average outcome trajectories 19 39%
Event-study plots 23 47%
Neither 19 39%

FindingsMotivation Estimators Data & Procedure Recommends 

Among 49 Replicable Studies



Procedure

FindingsMotivation Estimators Data & Procedure Recommends 
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• Step 1. Understand the context, setting, and data structure 

- Plot raw data 
- Record key information
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Procedure
• Step 1. Understand the context, setting, and data structure 

- Plot raw data 
- Record key information

• Step 2. Replicate a main result 
- Original variance estimator & cluster-bootstrap procedure

• Step 3. Re-estimate ATT and the event study plot using TWFE and several HTE-robust estimators, including 
- IW (Sun & Abraham 2021)  — If staggered DID 

- CSDID (Callaway and Sant’Anna 2021) — If staggered DID 

- Stacked DID (Cengiz et al. 2019) — If staggered  DID 
- PanelMatch/DID multiple (Imai, Kim & Wang 2021; De Chaisemartin and D’Haultfœuille) 
- Imputation (Borusyak, Jaravel and Spiess 2021; Liu, Wang & Xu 2022)
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Procedure
• Step 1. Understand the context, setting, and data structure 

- Plot raw data 
- Record key information

• Step 2. Replicate a main result 
- Original variance estimator & cluster-bootstrap procedure

• Step 3. Re-estimate ATT and the event study plot using TWFE and several HTE-robust estimators, including 
- IW (Sun & Abraham 2021)  — If staggered DID 

- CSDID (Callaway and Sant’Anna 2021) — If staggered DID 

- Stacked DID (Cengiz et al. 2019) — If staggered  DID 
- PanelMatch/DID multiple (Imai, Kim & Wang 2021; De Chaisemartin and D’Haultfœuille) 
- Imputation (Borusyak, Jaravel and Spiess 2021; Liu, Wang & Xu 2022)

• Step 4. Conduct diagnostic test based on the imputation estimator (Liu, Wang & Xu 2022) 
- Tests for pretrend & carryover effects 
- Sensitivity analysis (Rambachan & Roth 2023)
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Example 1: Coethnic Mobilization (APSR 2020)
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• Grumbach & Sahn (2020): Do minority candidates in US congressional 
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Example 1: Coethnic Mobilization (APSR 2020)

• Grumbach & Sahn (2020): Do minority candidates in US congressional 
elections mobilize coethnic donators?

‣ Treatment: Asian candidates

‣ Outcome: share of Asian donations

‣ Sample size: 
- N: 489 
- T: 17 (1980-2012) 
- #obs: 7,141
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Diagnostics

74

F test p−value:0.247
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Sensitivity Analysis: Relaxing the PT

• Addapt Rambachan & Roth (2023)’s Robust Confidence Set to Imputation Estimators
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Sensitivity Analysis: Relaxing the PT

• Addapt Rambachan & Roth (2023)’s Robust Confidence Set to Imputation Estimators

• Allows for post-treatment confounding to be M times the size of the maximum difference between two neighboring 
placebo periods (assume PT holds exactly iff M = 0)
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• Allows for post-treatment confounding to be M times the size of the maximum difference between two neighboring 
placebo periods (assume PT holds exactly iff M = 0)

Example 1Motivation Estimators Data & Procedure Recommends Example 2 Example 3 Overall Assessment

Confidence Set (M = 0.5)



Sensitivity Analysis: Relaxing the PT

• Addapt Rambachan & Roth (2023)’s Robust Confidence Set to Imputation Estimators

• Allows for post-treatment confounding to be M times the size of the maximum difference between two neighboring 
placebo periods (assume PT holds exactly iff M = 0)

Example 1Motivation Estimators Data & Procedure Recommends Example 2 Example 3 Overall Assessment

Robust Confidence Set with Different MConfidence Set (M = 0.5)



Three Examples

• Example 1: Coethnic Mobilization
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Three Examples

• Example 1: Coethnic Mobilization

‣ Strong design; HTE matters marginally — estimators (including TWFE) broadly agree
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Example 2: Lawsuit against Land Use Restriction
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Example 2: Lawsuit against Land Use Restriction
• Treatment: Fair Housing Act lawsuits against city land-use restrictions 
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Example 2: Lawsuit against Land Use Restriction
• Treatment: Fair Housing Act lawsuits against city land-use restrictions 

• Outcome: racial compositions of city dwellers in California
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Example 2: Lawsuit against Land Use Restriction
• Treatment: Fair Housing Act lawsuits against city land-use restrictions 

• Outcome: racial compositions of city dwellers in California
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Example 2: Lawsuit against Land Use Restriction

Placebo test p−value: 0.000
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• Treatment: Fair Housing Act lawsuits against city land-use restrictions 

• Outcome: racial compositions of city dwellers in California
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Removing Interpolated Data and Adding Time Trends
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Removing Interpolated Data and Adding Time Trends
• Demographic data are mostly interpolated based on Census.
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Removing Interpolated Data and Adding Time Trends
• Demographic data are mostly interpolated based on Census.

• Findings are similar once we removed the interpolated data.

Example 1Motivation Estimators Data & Procedure Recommends Example 2 Example 3 Overall Assessment



Removing Interpolated Data and Adding Time Trends
• Demographic data are mostly interpolated based on Census.

• Findings are similar once we removed the interpolated data.
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Removing Interpolated Data and Adding Time Trends
• Demographic data are mostly interpolated based on Census.

• Findings are similar once we removed the interpolated data.

• The negative result is completely gone once we added city-specific linear time-trends
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Removing Interpolated Data and Adding Time Trends
• Demographic data are mostly interpolated based on Census.

• Findings are similar once we removed the interpolated data.

• The negative result is completely gone once we added city-specific linear time-trends

F test p−value: 0.000

168

−0.15

−0.10

−0.05

0.00

0.05

0.10

−2 0 2
Relative Period

Ef
fe

ct
 o

n 
Sh

ar
e 

of
 W

hi
te

 P
op

ul
at

io
n

Original Specification

F test p−value: 0.213
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Various Estimators Still Broadly Agree
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Various Estimators Still Broadly Agree
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Outcome Trajectories by Cohort

Treatment Status



Sensitivity Analysis w/ Smoothness Restriction
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Sensitivity Analysis w/ Smoothness Restriction
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• Sensitivity analysis reveals that the result is not robust to a PT violation with a linear time trend.
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‣ Strong design; HTE matters marginally — estimators (including TWFE) broadly agree

• Example 2: Lawsuit against land use restriction

‣ Clear signs of PT violations

‣ HTE is a second-order issue; agreement does not mean robustness

‣ Simple plotting (and tests) will help spot the issue
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Example 3: Updating cadastral maps on Tax Revenue

• The authors study the effect of cadastral map updating on property tax revenue in Brazil
• Disagreement among estimators in the full sample
• Event study plot based on a subsample suggests a positive effect

Figure 1B (based on a Subsample)
Replicated based on the Full Sample
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Three Examples

• Example 3: Updating cadastral maps on tax revenue

‣ When estimators disagree, it may be a sign of PT violations

‣ Design phrase, e.g. trimming, help improve inference (Imbens & Rubin 2015)

FindingsMotivation Estimators Data & Procedure Recommends 

• Example 1: Coethnic Mobilization 

‣ Strong design; HTE matters marginally — estimators (including TWFE) broadly agree

• Example 2: Lawsuit against land use restriction 

‣ Clear signs of PT violations 

‣ HTE is a second-order issue; agreement does not mean robustness 

‣ Simple plotting (and tests) will help spot the issue



Overal Assessment
How much does HTE matter? 

Why does “robust DID” require so much power?



Do HTE-Robust Estimators Overturn Original Findings?
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Estimates from TWFE and Imputation Method Broadly Aligned

insignificant at 5% with  
the imputation method
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When PT Seems Plausible, Estimators Tend to Agree

Bischof and Wagner (2019)
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The Staggered Cases — Coefficients
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The Staggered Cases — Z Scores
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Hall & Yoder (2022) 
Home ownership and turnout

Caughey, Warshaw & Xu (2017):  
Partisan governors and policy liberalism



Sensitivity Analysis with Relaxed PT

Histogram of Threshold M̃
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“Robust” DID Is Power Hungry
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Big Picture
• Clear signs of PT violations still common (~25%) 

‣ In >50% cases, we cannot tell b/c too few pre-periods or low power

• HTE matters (but it’s complicated) 

‣ Few sign-flipping 

‣ Estimators tend to agree when PT seems plausible 

‣ Large variability in some cases, likely driven by sparse data & PT violations

• Other Issues 

‣ Missing data (unlikely Missing-At-Random) 

‣ Carryover effects are common

Relaxing constant effects or the 
PT leads to insufficient power
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w/ enough power, can afford HTE-robust estimators 
w/o enough power, cannot validate TWFE assumptions  
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Recommendations

Do's Don’ts

Design trumps analysis Start empirical analysis with a research design; proceed if “feedback” from past 
outcomes to treatment assignment is not a major concern

Start empirical analysis by blindly running regressions using existing 
data

Discussion of designs Clearly specify designs and their corresponding identification assumptions Equate designs with outcome models

Plot raw data
Plot raw data to better understand the research setting, missingness, sources of 
variations in the treatment and outcome variables, and univariate/bivariate 
distributions

Run regressions without looking at the data

Estimators Choose HTE-robust estimators and always plot the estimated dynamic 
treatment effects

Choose models solely based on your beliefs; report regression 
coefficients only; no results visualization or diagnostics

Diagnostics Conduct both visual and statistical tests to gauge the validity the identification 
and modeling assumptions

Level of clustering Cluster SEs at the level of treatment assignment or higher to account for 
potential spatial spillover Cluster SEs at a level lower than treatment assignment

Bootstrapping Use cluster-bootstrap procedures when the number of clusters is small (e.g., 
<50) Use asymptotic SEs when the number of clusters is small

Explore HTE Explore HTE along theoretically important pretreatment covariates with flexible 
estimation strategies and visualize your findings (future work)

Explore HTE through rigid regression models with interactions without 
visual aid
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visual aid
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Recommendations

Do's Don’ts

Design trumps analysis Start empirical analysis with a research design; proceed if “feedback” from past 
outcomes to treatment assignment is not a major concern

Start empirical analysis by blindly running regressions using existing 
data

Discussion of designs Clearly specify designs and their corresponding identification assumptions Equate designs with outcome models

Plot raw data
Plot raw data to better understand the research setting, missingness, sources of 
variations in the treatment and outcome variables, and univariate/bivariate 
distributions

Run regressions without looking at the data

Estimators Choose HTE-robust estimators and always plot the estimated dynamic 
treatment effects

Choose models solely based on your beliefs; report regression 
coefficients only; no results visualization or diagnostics

Diagnostics Conduct both visual and statistical tests to gauge the validity the identification 
and modeling assumptions

Level of clustering Cluster SEs at the level of treatment assignment or higher to account for 
potential spatial spillover Cluster SEs at a level lower than treatment assignment

Bootstrapping Use cluster-bootstrap procedures when the number of clusters is small (e.g., 
<50) Use asymptotic SEs when the number of clusters is small

Explore HTE Explore HTE along theoretically important pretreatment covariates with flexible 
estimation strategies and visualize your findings (future work)

Explore HTE through rigid regression models with interactions without 
visual aid

• Come up with a plausible research design … estimators  designs; “shocking” element; justify  ≠ Δs,tYi,t(0) ⊥⊥ Di,t, ∀s, t
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• Understand your data better …before typing “reghdfe” in Stata
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• Trimming your data (to “compare like with like”) is not forbidden …as long as Y is not being used
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Recommendations

Do's Don’ts

Design trumps analysis Start empirical analysis with a research design; proceed if “feedback” from past 
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visual aid

• Come up with a plausible research design … estimators  designs; “shocking” element; justify  ≠ Δs,tYi,t(0) ⊥⊥ Di,t, ∀s, t

• Understand your data better …before typing “reghdfe” in Stata

• Trimming your data (to “compare like with like”) is not forbidden …as long as Y is not being used

• Using HTE-robust estimators is safer  …and the choice of estimators shouldn’t matter much

• Validate your assumptions …knowing that power is a major concern
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Tools
• panelView (R & Stata), fect (R & Stata)  

• Tutorial: https://yiqingxu.org/packages/fect/05-panel.html
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Thank you!


