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Motivations



Motivations

Two-way fixed effects models are one of the most commonly used statistical routines for TSCS data

in the social sciences.

• Accounting for unobserved unit and time heterogeneity

• Flexible, e.g. a treatment can switch on and off

• Easy to estimate and interpret
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Motivations

Yit = τDit + X ′β + αi + ξt + εit

in which Dit is dichotomous

• This approach has shortcomings (Imai and Kim 2019):

• Strict exogeneity implies: no time-varying confounders and no feedback from past outcome to

treatment

• Functional form implies treatment effect homogeneity and no carryover effects

• Recent literature focuses on the homogeneity assumption, whose failure will lead to “negative

weighting,” hence, biases (Chernozhukov et al. 2013; Goodman-Bacon 2018; de Chaisemartin and

D’Haultfœuille 2018; Borusyak, Jaravel & Spiess 2021)
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Interpreting Strict Exogeneity

Recall: no feedback; no time-varying confounder; no anticipation effect;

no carryover effects (can be relaxed)
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What’s Negative Weighting?

• Question: Can TWFE get at (some weighted) ATT

when the treatment effects are heterogeneous

• Probably not! (Goodman-Bacon 2018; de Chaisemartin and

D’Haultfœuille 2018)

• Early adopters (e.g. D) serves as controls for late

adopters (e.g. B)

⇒ Some treated observations receive negative weights
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This Paper

1. Propose a simple framework of counterfactual estimation for TSCS data to relax the

homogeneity assumption and account for decomposable time-varying confounders

2. Discuss three counterfactual estimators, which directly imputes treated counterfactuals:

• Fixed effects counterfactual (FEct)

• Interactive fixed effects counterfactual (IFEct)

• Matrix completion (MC)

3. Main advantage: accommodate general treatment patterns

4. Provide a set of diagnostic tools to gauge the validity of strict exogeneity assumption

• A new plot for dynamic treatment effects
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Current Practice for Evaluating Assumptions: Angrist & Pischke Chapter 5

Plot for “Dynamic Treatment Effects”

Common practices have drawbacks (Sun and Abraham 2020; Borusyak, Jaravel & Spiess 2021)
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This Paper

1. Propose a simple framework of counterfactual estimation for TSCS data to relax the

homogeneity assumption and account for decomposable time-varying confounders

2. Discuss three counterfactual estimators, which directly imputes treated counterfactuals:

• Fixed effects counterfactual (FEct)

• Interactive fixed effects counterfactual (IFEct)

• Matrix completion (MC)

3. Main advantage: accommodate general treatment patterns

4. Provide a set of diagnostic tools to gauge the validity of strict exogeneity assumption

• A new plot for dynamic treatment effects

• A placebo test

• Extension: a test for (no) carryover effects

• Extension: a test for (no) pretrend
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Intuition

• In a TSCS setting, treat Y (1) as missing data

• Use untreated data to build a model

• Estimate ATT by averaging differences between Y (1) and Ŷ (0) ⇒ no negative weighting!
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Intuition

ÂTT = Ê[τ̂it |Dit = 1,Ci = 1]

ÂTT s = Ê[τ̂it |Di,t−s = 0,Di,t−s+1 = Di,t−s+2 = · · · = Dit = 1︸ ︷︷ ︸
s periods

,Ci = 1].
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A New Plot for Dynamic Treatment Effects
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A New Plot for Dynamic Treatment Effects
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Plan

1. Motivation

2. Estimators

• FEct, IFEct, MC

• Remarks on Properties and Inference

3. Diagnostics

• A New Plot

• Placebo Test

• Test for No Carryover Effects

• Test for No Pre-trend

4. Empirical Examples

• Hainmueller & Hangatner (2015)

• Fouirnaies & Mutlu-Eren (2015)



Estimators



Examples of Counterfactual Estimators

We review three estimation strategies:

• FEct (this paper; Borusyak et al 2020; Gardner 2021):

Ŷit(0) = Xit β̂ + α̂i + ξ̂t

• IFEct (Gobillon&Magnac 2016; Xu 2017):

Ŷit(0) = Xit β̂ + λ̂′i F̂t

• Matrix Completion (MC) (Athey et al. 2018):

Ŷit(0) = Xit β̂ + L̂it ,

where matrix {Lit}N×T is a lower-rank matrix approximation of {Y (0)}N×T with missing values

Remarks:

• DiD is a special case of FEct

• FEct is a special case of gsynth

• Both IFEct and MC are estimated via iterative algorithms

• Cross-validation to choose the tunning parameter
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Key Assumptions

Assumption 1 (Functional form → additive separability)

For any i = 1, 2, · · · ,N and t = 1, 2, · · · ,T,

Yit(0) = f (Xit) + h(Uit) + εit ,

in which f (·) and h(·) are known, parametric functions.

Assumption 2 (Strict exogeneity → baseline assignment; no anticipation or feedback)

For any i , j = 1, 2, · · · ,N and t, s = 1, 2, · · · ,T,

εit ⊥⊥ {Djs ,Xjs ,Ujs}, for all i , j ∈ {1, 2, . . . ,N} and s, t ∈ {1, 2, . . . ,T}.

Assumption 3 (Low-dimensional decomposition → feasibility)

There exists a low-dimensional decomposition of h(Uit): h(Uit) = Lit , and rank(LN×T )� min{N,T}.
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Overview of Properties – FEct and IFEct

Proposition 1 (Unbiasedness and Consistency of FEct)

Under Assumptions 1-3 as well as some regularity conditions,

E[ÂTT s ] = ATTs and E[ÂTT ] = ATT ;

ÂTT s
p→ ATTs and ÂTT

p→ ATT as N →∞.

Proposition 2 (Consistency of IFEct)

Under Assumptions 1-3 as well as some regularity conditions,

ÂTT
p→ ATT as N,T →∞.

15



IFE vs. MC

• Singular value decomposition of L

LN×T = SN×NΣN×TRT×T

• Difference in how ΣN×T is regularized
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best subset nuclear norm


σ1 0 0 · · · 0

0 σ2 0 · · · 0

0 0 0 . . . 0

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

0 0 0 · · · 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 · · · 0





|σ1 − λL|+ 0 0 · · · 0

0 |σ2 − λL|+ 0 · · · 0

0 0 |σ3 − λL|+ . . . 0

.

.

.

.

.

.

.

.

.

.
.
. 0

|σT − λL|+
0 0 0 · · · 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 · · · 0


in which |a|+ = max(a, 0)

Adapted from Athey et al. (2021)

16



IFEct vs. MC

• IFEct works better with a small number of

strong factors

• MC works better with a large number of

weak factors
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Inferential Methods

• Non-parametric block bootstrap

• sample with replacement across units

• valid when N is large, Ntr
N

is fixed

• Jackknife

• dropping one treated unit a time

• suitable when the number of treated units is small
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QQ Plots: Theoretical vs. Empirical

Twoway FE
(bootstrap)
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Plan

1. Motivation

2. Estimators

• FEct, IFEct, MC

• Remarks on Properties and Inference

3. Diagnostics

• A New Plot

• Placebo Test

• Test for No Carryover Effects

• Tests for No Pre-trend

4. Empirical Examples

• Hainmueller & Hangatner (2015)

• Fouirnaies & Mutlu-Eren (2015)
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A Simulated Example

Data Generating Process:

• T = 35, N = 200

• Outcome model: a linear interactive fixed effect model with two factors: one drift process and

one white noise.

Yit = τitDit + 5 + 1 · Xit,1 + 3 · Xit,2 + λi1 · f1t + λi2 · f2t + αi + ξt + εit

• Treatment assignment: general structure with the prob of getting treated correlated with

additive and interactive fixed effect.

• Treatment effects: τi,t>T0i = [0.4(t − T0i ) + eit ] ∗ Dit , hence, no carryover effects
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Dynamic Treatment Effects
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Dynamic Treatment Effects
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1. Placebo Test

• Drop S periods before the treatment’s onset, and estimate the “ATT” in these periods.
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1. Placebo Test

• Drop S periods before the treatment’s onset, and estimate the “ATT” in these periods.

• Benefits: intuitive and robust to model misspecification

• Accommodate both a difference-in-means (DIM) test or an equivalence test

t test p−value: 0.000

TOST p−value: 0.946
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t test p−value: 0.534

TOST p−value: 0.000
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t test p−value: 0.000

TOST p−value: 0.131
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Why an Equivalence Test?

• A DIM test: H0: |ATT p| = 0 vs. H1: |ATT p| > 0

• An equivalence test: H0: |ATT p| > θ vs. H1: |ATT p| ≤ θ

• Compare with a DIM test,

• it is conservative when the power is limited;

• gains more power when the sample size (N) grows larger;

• Use a pre-specified threshold: θ = 0.36 ∗ sd(Ỹit,Dit=0)

• An extension to Hartman and Hidalgo (2018) in a TSCS setting

• Drawback 1: setting the threshold requires user discretion

• Drawback 2: use only limited information
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Why an Equivalence Test? (Hartman 2021)
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2. Test for No Carryover Effects

• Drop S periods after the treatment’s ending, and estimate the average carryover effect (ACOE)

in these periods.
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2. Test for No Carryover Effects

• Drop S periods after the treatment’s ending, and estimate the average carryover effect (ACOE)

in these periods.

t test p−value: 0.251

TOST p−value: 0.000

124

−4

−2

0

2

4

6

−2 0 2 5
Time Since the Treatment Ended

E
ffe

ct
 o

f D
 o

n 
Y

FEct

t test p−value: 0.799

TOST p−value: 0.000
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t test p−value: 0.513

TOST p−value: 0.000
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3. Test for No Pre-Trend

• One drawback of the placebo test is that it only uses limited information and may be

under-powered

• We extend it to a test for no pre-trend by dropped one pre-treatment period a time

(leave-one-period-out)

• H0: |ATTs | > θ,∃s ≤ T0 vs. H1: |ATTs | ≤ θ,∀s ≤ T0

• Drawback: easy to pass when pre-treatment data are used to fit the model, e.g. IFEct and

MC, because of serial correlation in data
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3. Tests for No Pre-Trend

F test p−value: 0.000

TOST max p−value: 0.836
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F test p−value: 0.808

TOST max p−value: 0.003
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F test p−value: 0.000

TOST max p−value: 0.012
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Equivalence Test vs. the F Test?
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Diagnostic Tests Summary
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Empirical Examples



Hainmueller & Hangatner (2015)

Does indirect democracy benefit immigrant

minorities?

• Unit of analysis: 1400 Swiss municipalities

from 1991 to 2009

• Treatment: Indirect (vs. direct) democracy

• Outcome: Naturalization rate
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Hainmueller & Hangatner (2015) – FEct
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t test p−value: 0.422

TOST p−value: 0.000
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F test p−value: 0.182

TOST max p−value: 0.001
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Fouirnaies and Mutlu-Eren (2015)

Does partisan alignment bring about central

government grants in UK?

• Unit of analysis: 466 local councils from

1992 to 2012

• Treatment: Partisan alignment with the

central government

• Outcome: Amount of specific grant
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Fouirnaies and Mutlu-Eren (2015)
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Note: The authors added unit-specific linear time trends to a TWFE model,

whose results that are broadly consistent with those from IFEct.
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Fouirnaies and Mutlu-Eren (2015)

t test p−value: 0.012

TOST p−value: 0.084
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t test p−value: 0.492

TOST p−value: 0.000
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t test p−value: 0.030

TOST p−value: 0.001
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Fouirnaies and Mutlu-Eren (2015)

  t test p−value: 0.000

TOST p−value: 0.182
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  t test p−value: 0.058

TOST p−value: 0.010

294

−0.4

−0.2

0.0

0.2

0.4

0 5
Year(s) Since Partisan Disalignment

T
he

 E
ffe

ct
 o

f P
ar

tis
an

 A
lig

nm
en

t o
n 

S
pe

ci
fic

 G
ra

nt
s 

(lo
g) IFEct

  t test p−value: 0.000

TOST p−value: 0.060
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Addressing Limited Carryover (up to 2 periods)
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Fouirnaies and Mutlu-Eren (2015): Addressing Limited Carryover

Mark three periods after treatment ended as the “carryover” periods:

  t test p−value: 0.203

TOST p−value: 0.002

216

−0.4

−0.2

0.0

0.2

0.4

0 5
Year(s) Since Partisan Disalignment

T
he

 E
ffe

ct
 o

f P
ar

tis
an

 A
lig

nm
en

t o
n 

S
pe

ci
fic

 G
ra

nt
s 

(lo
g) FEct

  t test p−value: 0.751

TOST p−value: 0.000
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  t test p−value: 0.187

TOST p−value: 0.000
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Fouirnaies and Mutlu-Eren (2015): Cohort Effect

121

−0.4

−0.2

0.0

0.2

0.4

−15 −10 −5 0
Year(s) Since Partisan Alignment

T
he

 E
ffe

ct
 o

f P
ar

tis
an

 A
lig

nm
en

t o
n 

S
pe

ci
fic

 G
ra

nt
s 

(lo
g) Cohort: First Treated in [1992,1996]

203

−0.4

−0.2

0.0

0.2

0.4

−2 0 2 5
Year(s) Since Partisan Alignment

T
he

 E
ffe

ct
 o

f P
ar

tis
an

 A
lig

nm
en

t o
n 

S
pe

ci
fic

 G
ra

nt
s 

(lo
g) Cohort: First Treated in [1997,2009]

83

−0.4

−0.2

0.0

0.2

0.4

−15 −10 −5 0
Year(s) Since Partisan Alignment

T
he

 E
ffe

ct
 o

f P
ar

tis
an

 A
lig

nm
en

t o
n 

S
pe

ci
fic

 G
ra

nt
s 

(lo
g) Cohort: First Treated after 2010

41



Recommendations

• Plot your data (treatment and outcome) and ask whether strict exogeneity assumption is a

plausible

• Start with FEct, draw the dynamic treatment effects plot and perform tests.

• If FEct fails the tests, apply more complex models, such as IFEct and MC, and perform

diagnostics again.

• If the chosen method fails the test for no carryover effects, remove several periods after the

treatment ends from the model-building stage, then re-apply the method and conduct

diagnostics again.

• If a treatment effect is detected, perform subgroup analysis to understand which group(s) of

units are driving the effect.

• Communicate your findings effectively, ideally with figures.
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Concluding Remarks

1. We survey a group of counterfactual estimators that relax the homogeneity assumption (hence,

no negative weighting issues) and account for decomposable time-varying confounders

2. We propose diagnostic tools to evaluate the key identification assumption and explore carryover

effects

3. Open source package panelView and fect in R and Stata

→ transparency, transparency, transparency!

4. Future work: sequential assignment (w/ feedback); less parametric assumptions, interference;

more complex structure; discrete outcomes...
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