Bayesian Rule Set : A Quantitative Alternative to Qualitative Comparative Analysis

Albert Chiu and Yiqing $X u$
Department of Political Science, Stanford University

September 30, 2021

Democratic consolidation

Which countries remain democratic?

Modernization theory

- Wealth, industrialization, education, urbanization
- Which variables matter? For whom?
- Heterogeneous treatment effects

Regression

- OLS, LASSO, MLE, Bayesian, etc.
- Common trait: effects are marginal and constant

Regression

- OLS, LASSO, MLE, Bayesian, etc.
- Common trait: effects are marginal and constant
- Can relax this assumption at a cost
- E.g., interactions: $\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3}+\beta_{12} X_{1} X_{2}+\beta_{13} X_{1} X_{3}+\beta_{23} X_{2} X_{3}+\beta_{123} X_{1} X_{2} X_{3}$
- Uninterpretability
- Dimensionality \& model selection: \# terms is exponential

Rule Sets as a Classifier

- If-Then statements to classify data
- Qualitative Comparative Analysis (QCA):

IF (High Wealth) OR (Medium Wealth AND Low Industrialization) THEN Stable Democracy

Rule Sets as a Classifier

- If-Then statements to classify data
- Qualitative Comparative Analysis (QCA):

IF (High Wealth) OR (Medium Wealth AND Low Industrialization) THEN Stable Democracy

Rule Sets as a Classifier

- If-Then statements to classify data
- Qualitative Comparative Analysis (QCA):

IF (High Wealth) OR (Medium Wealth AND Low Industrialization) THEN Stable Democracy

QCA can't handle errors

- Discards data
- Complex rule sets: uninterpretable, overfitted
- Computationally infeasible
- True positive \times False negative
- True negative \times False positive

An Alternative Method For Learning Rule Sets

A number of ways, e.g. decision trees (but not Random Forest)

An Alternative Method For Learning Rule Sets

A number of ways, e.g. decision trees (but not Random Forest) Bayesian Rule Sets (BRS) (Wang et al., 2016)

- Compatible with errors; uses all data
- Maintains sparsity/parsimony
- Computationally Feasible

An Alternative Method For Learning Rule Sets

A number of ways, e.g. decision trees (but not Random Forest) Bayesian Rule Sets (BRS) (Wang et al., 2016)

- Compatible with errors; uses all data
- Maintains sparsity/parsimony
- Computationally Feasible

Contributions

- Improve BRS
- Uncertainty and stability for rule sets
- Graphical tools

Overview

(1) Motivation
(2) Method

- Bayesian Rule Set (BRS)
- Bootstrapping Rule Sets
- Graphical Tools
(3) Monte Carlo Simulation

4) A Large- N, Large- p Empirical Example: Voter Turnout

BRS: Setup

- Goal: given hyper-parameters H and data S, find rule set A that maximizes posterior (MAP)

BRS: Setup

- Goal: given hyper-parameters H and data S, find rule set A that maximizes posterior (MAP)
- Rule set: e.g. If $(A$ and $B)$ or (C) then $Y=1$
- $[(A \cap B) \cup(C)] \subseteq Y^{+}$

BRS: Setup

- Goal: given hyper-parameters H and data S, find rule set A that maximizes posterior (MAP)
- Rule set: e.g. If $(A$ and $B)$ or (C) then $Y=1$
- $[(A \cap B) \cup(C)] \subseteq Y^{+}$
- Binary outcome, discrete data
- User specifies hyper-parameters

BRS: Setup

- Goal: given hyper-parameters H and data S, find rule set A that maximizes posterior (MAP)
- Rule set: e.g. If $(A$ and $B)$ or (C) then $Y=1$
- $[(A \cap B) \cup(C)] \subseteq Y^{+}$
- Binary outcome, discrete data
- User specifies hyper-parameters
- Prior controls sparsity, likelihood controls performance

BRS: Likelihood

- $\rho_{+} \sim \operatorname{Beta}\left(\alpha_{+}, \beta_{+}\right)$
- $\rho_{-} \sim \operatorname{Beta}\left(\alpha_{-}, \beta_{-}\right)$

$$
y_{n} \mid x_{n}, A \sim\left\{\begin{array}{ll}
\operatorname{Bernoulli}\left(\rho_{+}\right) & \text {if } x_{n} \in A \\
\operatorname{Bernoulli}\left(1-\rho_{-}\right) & \text {if } x_{n} \notin A .
\end{array} .\right.
$$

BRS: Likelihood

- $\rho_{+} \sim \operatorname{Beta}\left(\alpha_{+}, \beta_{+}\right)$
- $\rho_{-} \sim \operatorname{Beta}\left(\alpha_{-}, \beta_{-}\right)$
-

$$
y_{n} \mid x_{n}, A \sim\left\{\begin{array}{ll}
\operatorname{Bernoulli}\left(\rho_{+}\right) & \text {if } x_{n} \in A \\
\operatorname{Bernoulli}\left(1-\rho_{-}\right) & \text {if } x_{n} \notin A .
\end{array} .\right.
$$

- Choose α_{ξ} large and β_{ξ} small so $E\left[\rho_{\xi}\right]=\frac{\alpha_{\xi}}{\alpha_{\xi}+\beta_{\xi}} \approx 1, \xi \in\{-,+\}$

BRS-Poisson: Priors

- Modified from Wang et al. (2017)

BRS-Poisson: Priors

- Modified from Wang et al. (2017)
- Pick number of rules $M \sim \operatorname{Poisson}(\lambda)$

BRS-Poisson: Priors

- Modified from Wang et al. (2017)
- Pick number of rules $M \sim \operatorname{Poisson}(\lambda)$
- For $m=1,2, \ldots, M$:
- Pick length of m th rule $L_{m} \sim$ Truncated-Poisson (η)

BRS-Poisson: Priors

- Modified from Wang et al. (2017)
- Pick number of rules $M \sim \operatorname{Poisson}(\lambda)$
- For $m=1,2, \ldots, M$:
- Pick length of m th rule $L_{m} \sim$ Truncated-Poisson (η)
- For $j=1,2, \ldots, L_{m}$:
- Pick variable V_{j} uniformly at random
- Pick value w_{j} of variable uniformly at random

BRS-Poisson: Priors

- Modified from Wang et al. (2017)
- Pick number of rules $M \sim \operatorname{Poisson}(\lambda)$
- For $m=1,2, \ldots, M$:
- Pick length of m th rule $L_{m} \sim$ Truncated-Poisson (η)
- For $j=1,2, \ldots, L_{m}$:
- Pick variable V_{j} uniformly at random
- Pick value w_{j} of variable uniformly at random
- rule $a_{m}=\bigcap_{j}\left\{V_{j}=w_{j}\right\}$
- Rule set $A=\bigcup_{m} a_{m}$

Hyper-parameters

Well behaved penalties

Hyper-parameters

Well behaved penalties

- Penalty for rule length $\phi(\eta)>0$ for $\eta<2$
- Penalty for number of rules $\psi(\lambda, \eta)>0$ for $\lambda \lesssim 1.47$
- ϕ always strictly decreasing function of η
- ψ strictly decreasing function of η for any λ and for $\eta<2$

Hyper-parameters

Well behaved penalties

- Penalty for rule length $\phi(\eta)>0$ for $\eta<2$
- Penalty for number of rules $\psi(\lambda, \eta)>0$ for $\lambda \lesssim 1.47$
- ϕ always strictly decreasing function of η
- ψ strictly decreasing function of η for any λ and for $\eta<2$

Linear search over η : start $\mathrm{w} / \lambda=\eta=1$, decrease η to penalize complexity more

Hyper-parameters

Well behaved penalties

- Penalty for rule length $\phi(\eta)>0$ for $\eta<2$
- Penalty for number of rules $\psi(\lambda, \eta)>0$ for $\lambda \lesssim 1.47$
- ϕ always strictly decreasing function of η
- ψ strictly decreasing function of η for any λ and for $\eta<2$

Linear search over η : start $w / \lambda=\eta=1$, decrease η to penalize complexity more If "too" sparse, strengthen likelihood: multiply $\alpha_{\xi}, \beta_{\xi}$ by $c>1$

Algorithm For Inference

- Enormous search space; bounds to reduce it
- Intuition: can only have a few rules, each has to cover many cases

Algorithm For Inference

- Enormous search space; bounds to reduce it
- Intuition: can only have a few rules, each has to cover many cases
- "Approximate" algorithm: cull rules at beginning w/ arbitrary cutoff

Algorithm For Inference

- Enormous search space; bounds to reduce it
- Intuition: can only have a few rules, each has to cover many cases
- "Approximate" algorithm: cull rules at beginning w/ arbitrary cutoff
- Any search procedure (e.g. simulated annealing - balances greediness w/ exploration, avoid local maxima)

Quantifying Uncertainty

Confidence/credible set/collection infeasible to find, uninterpretable

- Maximum density \rightarrow sort exponentially many rule sets
- Can't summarize using, e.g., end points

Quantifying Uncertainty

Confidence/credible set/collection infeasible to find, uninterpretable

- Maximum density \rightarrow sort exponentially many rule sets
- Can't summarize using, e.g., end points

Alternative: bootstrapping

- Prevalence: proportion of times a rule appears in solution
- Coverage: proportion of points covered by rule (bootstrap CI)

Quantifying uncertainty

Stabilizing Results

Small changes in numerical results typically not substantively meaningful

- e.g., $\beta=1$ vs. $\beta=1.1$

Small changes in rule sets can be meaningful

- e.g., (A and B and C) vs. (A and B and D)

Stabilizing Results

Small changes in numerical results typically not substantively meaningful

- e.g., $\beta=1$ vs. $\beta=1.1$

Small changes in rule sets can be meaningful

- e.g., (A and B and C) vs. (A and B and D)

Instability due to:

- Failure to converge
- Perturbations in data

Stabilizing Results

Small changes in numerical results typically not substantively meaningful

- e.g., $\beta=1$ vs. $\beta=1.1$

Small changes in rule sets can be meaningful

- e.g., (A and B and C) vs. (A and B and D)

Instability due to:

- Failure to converge
- Perturbations in data

Solution: aggregate high prevalence rules

- Combine rules \rightarrow rule set
- Maximize, e.g., accuracy using at most 3 rules

Bar Plots

Chord Diagram

t-SNE Plots

- True positive \times False negative
- True negative \times False positive

Simulation Setup

- $N=25$ to 1000
- 5, 10, 20 binary variables
- binary outcome, either deterministic or probabilistic
- True rule set $A^{*}=\left(V_{1} \cap V_{2}\right) \cup\left(V_{3} \cap V_{4} \cap V_{5}^{C}\right)$
- $P\left(y_{n}=1 \mid x_{n} \in A^{*}\right) \in\{1, .75\}$
- $P\left(y_{n}=1 \mid x_{n} \notin A^{*}\right) \in\{0, .25\}$

Simulation Results

Simulation Results

Deterministic DGP, 10 variables

method

- BRS

Simulation Results

Voter Turnout

Landwehr and Ojeda (2021): regression to estimate the effect of depression on voter turnout

- $N=1,014, p=13$

Voter Turnout

Landwehr and Ojeda (2021): regression to estimate the effect of depression on voter turnout

- $N=1,014, p=13$

Task of discovery/theory building:

- Who votes
- Which variables are predictive; for whom

Voter Turnout

Voter Turnout

Voter Turnout

One interpretation:

- High age alone is highly predictive; don't need other factors
- Amongst younger, political interest is important but not always enough:
- Depression
- Race+class

Voter Turnout

- True positive \times False negative
- True negative \times False positive

Dashed lines encircle "Depression (low or med) and Political Interest (high)"

Conclusion

- Rule sets can interpretably describe complex relations (better than regression)
- Theory building, data description

Conclusion

- Rule sets can interpretably describe complex relations (better than regression)
- Theory building, data description
- QCA fails when data is large and heterogeneous
- BRS solves some of QCA's problems

Conclusion

- Rule sets can interpretably describe complex relations (better than regression)
- Theory building, data description
- QCA fails when data is large and heterogeneous
- BRS solves some of QCA's problems
- Contributions
- BRS priors/hyper-parameters: computation, interpretation, ease of use
- Rule sets: uncertainty and stability
- Graphical tools

References

Landwehr, Claudia and Christopher Ojeda. 2021. "Democracy and depression: a cross-national study of depressive symptoms and nonparticipation." American Political Science Review 115(1):323-330.
Wang, Tong, Cynthia Rudin, Finale Doshi-Velez, Yimin Liu, Erica Klampfl and Perry MacNeille. 2017. "A Bayesian framework for learning rule sets for interpretable classification." The Journal of Machine Learning Research 18(1):2357-2393.
Wang, Tong, Cynthia Rudin, Finale Velez-Doshi, Yimin Liu, Erica Klampfl and Perry MacNeille. 2016. Bayesian rule sets for interpretable classification. In 2016 IEEE 16th International Conference on Data Mining (ICDM). IEEE pp. 1269-1274.

