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Motivation
• Instrumental variable (IV) strategies have been widely used in the social sciences, including 

political science.  
— As an attempt to establish causality in the absence of experiments, RD, and longitudinal data 
— >150 papers in APSR, AJPS and JOP during the past decade (2011-2022) 

• IV designs require demanding identification assumptions; results need to be interpreted with 
caution (Angrist, Imbens & Rubin 1996; Sovey & Green 2011) 

• “How come IV estimates are always 5 times bigger than OLS estimates in political economy?” 
(Alberto Alesina, 2016 NBER Summer Institute) 

— Is that true? Why does it happen? What are the implications?
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This Paper
• We replicate 67 papers published in the APSR, AJPS, and JOP that employ an IV design as 

one of the main identification strategies 

• We find that 
— First-stage F statistic is often overestimated 
— Classical asymptotic standard errors often severely underestimate the uncertainties around the 2SLS 

estimates with the presence of outliers and non-i.i.d. errors (Young 2022) 
— In one-third of the replicated studies, the 2SLS estimates are 5 times bigger than the OLS estimates 
— 2SLS/OLS ratio is negatively correlated with the strength of the instrument esp. when the IVs are non-

experimental 

• We provide practical recommendations, including a local-to-zero test, to alleviate these issues
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Roadmap
• IV Strategy: Notations & Review 

• Replications 
— Data 
— Findings 
— Fixes 

• Conclusion
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IV Designs: Notations
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• Notations: Treatment d; Outcome y; Instrument z 

• Parameterization 
 
     
     

• Assumptions 

— Relevance:  

— Exogeneity (unconfoundedness & exclusion restriction): 
 

• The 2SLS estimator 
 

   and    (if exactly identified) 
 
(LLN on a “ratio” —> large finite sample bias)

y = α + τd + ε
d = π0 + π′￼z + ν

π ≠ 0

Cov(z, ε) = 0, 𝔼[ε] = 0

̂τ2SLS = (d′￼Pzd)−1d′￼Pzy ̂τIV = (z′￼d)−1z′￼y
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Potential Problems in IV Estimation
• Weak instruments (Fieller 1954; Charles & Starz 1990; Staiger & Stock 1997; Angrist & Pischke 2008) 

— Under i.i.d. errors, exacerbate finite sample bias of  (toward OLS) 

— Large variances:  

— Exacerbate finite sample bias of , leading to wrong test statistics 
— Exacerbate bias from failure of the exclusion restriction (more to follow) 

• Problem with the classic asymptotic SE estimator 
— Classical asymptotic variance estimator yield large finite sample biases (Young 2022) 
— Bootstrap procedures behave much better (Cameron, Gelbach, Miller 2008; Davidson & MacKinnon 2012) 

• Failure of the exclusion restriction

̂τ2SLS

𝕍̂( ̂τ2SLS) ≈ 𝕍̂( ̂τOLS)/R2
dz

𝕍̂( ̂τ2SLS)
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plim ̂τ2SLS = τ +
Cov(z, ε)
Cov(z, d)

⇒
plim ̂τ2SLS − τ
plim ̂τOLS − τ

=
ρ(z, ε)
ρ(d, ε)

1
ρ(z, d)
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Roadmap
• IV Designs: A Refresher 

• Potential Problems in IV Estimation 

• Replications 
— Data 
— Findings 
— Zero-First-Stage 

• Recommendations
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Data
• APSR, AJPS, and JOP: All papers using IV as one of 

the main identification strategies from 2011 to 2020 

• Criteria 
— IV results supporting the main argument 
— Linear models 
— Exclude dynamic panels using GMM 
— Multiple endogenous variables 

• For each design, selecting the most prominent IV 
result
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All Papers Incomplete 
Data

Incomplete 
Code

Replication 
Error Replicable

APSR 30 16 0 3 14 (42%)

AJPS 33 3 1 1 25 (83%)

JOP 51 19 3 1 28 (55%)

Total 114 38 4 5 67 (59%)
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Types of IVs
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Type of IV Number of Papers Percentage

Theory 42 60%

    Geography/Climate/Weather 13 19%

    History 11 16%

    Diffusion 2 3%

    Others 16 23%

Experiments 12 17%

Rules (including fuzzy RD) 7 10%

Econometrics 9 13%

Total 70 (designs) 100%
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Procedure
• Select the main IV specification that plays a central role in supporting a main claim in the paper 

• Compute the first-stage partial F statistics based on (1) classic analytic SEs, (2) Huber White heteroskedastic-robust 
SEs, (3) cluster- robust SEs, and (4) bootstrapped SEs, as well as (5) the effective F (Olea & Plueger 2013). 

• Replicate the original IV result using the 2SLS estimator and apply four different procedures for inference 

1. Conventional t-test based on the analytic SE 

2. Bootstrap-c (“c” for coefficient) and bootstrap-t (“t” for t-statistics) (Young 2022) 

3. The Anderson-Rubin test (Anderson & Rubin 1949) 

4. The tF procedure, which smoothly adjusts the t−ratio critical values based on the first-stage F statistic (Lee et al. 
2022) 

• Calculate the ratio between 2SLS and OLS estiamtes
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Finding 1: First-Stage F Statistics
• 17% (12 out of 70) do not report 

first-stage F statistic 

• Almost none applies bootstrap or 
the effective F 

• 11% (8 out of 70) have effective F 
statistics under 10 

• 17% (12 out of 70) have 
bootstrapped F statistics under 10
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Finding 2: Inference
• SE estimates for the 2SLS estimates are usually much larger than those of the OLS estimates
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Finding 2: Inference
• Using the Anderson-Rubin test, 19% designs become statistically insignificant at 5% 

• Using the bootstrap-t and bootstrap-c methods, 21% and 29% designs become statistically insignificant at 
5%, respectively
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Finding 2: Inference
• For the just identified cases (one-treatment, one-

instrument), we can use the tF procedure 

• As a result, 30% (16 out of 54) designs become 
statistically insignificant at 5%. 

• 5 studies deemed statistically significant when using 
the conventional fixed critical values (e.g. 1.96) for the 
t-test become statistically insignificant using the tF 
procedure
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Finding 3: 2SLS vs OLS
• In most papers, 2SLS and OLS estimates are of the 

same signs.
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Finding 3: 2SLS vs OLS
• In most papers, 2SLS and OLS estimates are of the 

same signs.

16

• In 97% (68 out of 70) designs, the magnitudes of the 
2SLS estimates are bigger than those of the OLS 
estimate 

• In 34% of them, the ratio is bigger than 5. 

• Excluding those that explicitly claim to expect  
downward biases in OLS results, the numbers are 96% 
and 35%.

| 2SLS Coef/OLS Coef | (log scale)
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Finding 3: 2SLS vs OLS
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• A strong negative correlation between the ratio and first-
stage correlation coefficient 

• The relationship is robust to removing studies with 
statistically insignificant OLS estimates 

• Possible explanations: 

1. Failure of IV exogeneity 

2. Publication bias 

3. HTE 

4. Measurement error in the treatment
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Finding 3: 2SLS vs OLS
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• A strong negative correlation between the ratio and first-
stage correlation coefficient 

• The relationship is robust to removing studies with 
statistically insignificant OLS estimates 

• Possible explanations: 

1. Failure of IV exogeneity 

2. Publication bias 
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Monte Carlo Evidence

19

| Correlation Coefficient between d and Predicted d |

| 2
SL

S 
C

oe
f −

 O
LS

 C
oe

f |
 / 

| O
LS

 C
oe

f |

0.0 0.1 0.2 0.3 0.4 0.5

0.
03

0.
1

0.
3

1
3

10
30 R2: 0.000

| Correlation Coefficient between d and Predicted d |

| 2
SL

S 
C

oe
f −

 O
LS

 C
oe

f |
 / 

| O
LS

 C
oe

f |

0.0 0.1 0.2 0.3 0.4 0.5

0.
03

0.
1

0.
3

1
3

10
30 R2: 0.874

| Correlation Coefficient between d and Predicted d |

| 2
SL

S 
C

oe
f |

 / 
| O

LS
 C

oe
f |

0.0 0.1 0.2 0.3 0.4 0.5
0.

01
0.

03
0.

1
0.

3
1

3
10

30 R2: 0.271

| Correlation Coefficient between d and Predicted d |

| 2
SL

S 
C

oe
f |

 / 
| O

LS
 C

oe
f |

0.0 0.1 0.2 0.3 0.4 0.5

0.
01

0.
03

0.
1

0.
3

1
3

10
30 R2: 0.001

Benchmark

HTE

Exclusion restriction violation

HTE + Publication bias



/24

Fixing Exclusion Restriction Failures is Difficult
• Potential solutions 

— “Design trumps analysis” (Rubin 2008) 
— “Zero-first-stage” (ZFS) test and “local-to-zero” (LTZ) correction 

• ZFS test (Bound & Jaeger 2000) 
— Running first stage and reduced-form regressions in places where there should be no effect 

• LTZ correction (Conley, Hansen & Rossi 2012; van Kippersluis and Rietveld 2018) 
— What would the 2SLS estimate be if a direct effect  existed? 
— We can use the coefficient from a ZFS test based on a subsample to set a prior for the direct effect 

 
                                                      

d → y

̂τ ∼ N(τ + Aμγ, 𝕍2SLS + AΩA′￼)
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Guiso, Sapienza & Zingales (2016)
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• Research question: the impact of self-governing 
tradition on modern-day social capital  

• Outcome: Social capital today 
Treatment: “Free city experience” 
Instrument: Bishop seat in the middle ages 

• “Zero-first-stage” in southern Italy; expect LTZ 
correction has small influences 
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Guiso, Sapienza & Zingales (2016)
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• Outcome: Social capital today 
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• “Zero-first-stage” in southern Italy; expect LTZ 
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Final Thoughts
• Root cause 

— IV estimates are much more uncertain than OLS estimates 
— Violations of unconfoundedness or exclusion restrictions are common 
➡ Incentives to p-hack & publication biases 
➡ Large IV-OLS discrepancy 

• IV is a design-based method; it should be used like one 
— Be extra-cautious when IVs are not generated by experiments & rules (fuzzy RD) 
— Finding one good IV is difficult; finding multiple good ones is super-difficult if not impossible — they 

should be justified individually (Angrist, Imbens & Graddy 2000; Angrist, Lavy & Schlosser 2010) 

— If possible, characterize compliers and never-takers (ZFS) (Abadie 2003, Marbach & Hangartner 2020)
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A Checklist
• Think hard about the design; commit to the direction of 

the selection bias 

• Obtain first-stage partial F statistic (e.g., the effective F) 

• Use conservative and weak-IV robust methods to conduct 
inference 

• Ask if a large 2SLS/OLS ratio is plausible 

• For observational studies, conduct a placebo test, e.g. a 
ZFS test, and sensitivity analysis 

• R Package available at https://yiqingxu.org/packages/ivDiag/
Thank you!
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