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A Technical Details

A.1 A Directed Acyclic Graph (DAG)

Figure A1. A DAG Illustration

YT0−1 YT0 YT0+1

D

xT0−1 xT0 xT0+1εT0−1 εT0 εT0+1

µT0−1 µT0 µT0+1

Note: Unit indices are dropped for simplicity. Vector µt represents unobserved time-varying
confounders. If Assumption 1 holds, µt (or µit) can be expressed as λ′ift. We allow Di to be
correlated with xis,s<t and µis,s<t. In fact, we also allow it to be correlated with xjs,s<t and
µjs,s<t when j 6= i.
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A.2 Technical Assumptions

Assumptions 3–5 are shown below.

Assumption 3 Weak serial dependence of the error terms:

1. E(εitεis) = σi,ts, |σi,ts| ≤ σ̄i for all (t, s) such that 1
N

∑N
i=1 σ̄i ≤M .

2. For every (t, s), E|N−1/2
∑N

i=1[εisεit − E(εisεit)]|4 ≤M .

3. 1
T 2N

∑
t,s,u,v

∑
i,j |cov(εitεis, εjuεjv)| ≤M and 1

TN2

∑
t,s

∑
i,j,k,l |cov(εitεjt, εksεls)| ≤M.

4. E(εitεjs) = 0, for all i 6= j, (t, s).

Assumption 4 Regularity conditions:

1. E|εit|8 ≤M .

2. E‖xit‖4 ≤ M : Let F = {F : F ′F/T = I}. We assume infF∈F D(F ) > 0, in

which D(F ) = 1
NcoT

∑Nco

i=1 S
′
iSi, where Si = MFXi − 1

Nco

∑N
k=1 MFXkaik and aik =

λ′i(Λ
′
coΛco)

−1λk.

3. E‖ft‖4 ≤ M < ∞ and 1
T

∑T
t=1 ftf

′
t

p→ ΣF for some r × r positive definite matrix ΣF ,

as T0 →∞.

4. E‖λi‖4 ≤ M < ∞ and Λ′coΛco/Nco
p→ ΣN for some r × r positive definite matrix ΣN ,

as Nco →∞.

Assumption 5 The error terms are cross-sectionally independent and homoscedastic.

1. εit ⊥⊥ εjs for all j 6= i, (t, s).

2. E(εitεis) = σts ≤M , for all (t, s).
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A.3 Estimating an Interactive Fixed-effect Model

As in Equation (1), I assume that the control units follow an interactive fixed-effect model:

Yco = Xcoβ + FΛ′co + εco,

The least square objective function is

SSR(β, F,Λco) =
Nco∑
i=1

(Yi −Xiβ − Fλi)′(Yi −Xiβ − Fλi).

The goal is to estimate β, F , and Λco by minimizing the SSR subject to the following

constraints:

F ′F/T = Ir and Λ′coΛco = diagonal.

A unique solution (β̂, F̂ , Λ̂co) to this problem exists. To find the solution, Bai (2009)

proposed an iteration scheme that can lead to the unique solution starting from some initial

value of β (for instance, the least-square dummy-variable (LSDV) estimates) or F . In each

iteration, given F and Λco, the algorithm computes β:

β̂(F,Λ) =

(
Nco∑
i=1

X ′iXi

)−1 Nco∑
i=1

X ′i(Yi − Fλi),

and given β, it computes F and Λco from a pure factor model (Yi −Xiβ) = Fλi + εi:

[ 1
NcoT

∑Nco

i=1(Yi −Xiβ)(Yi −Xiβ)′]F̂ = F̂ VNcoT ,

Λ̂co = 1
T

(Y −Xβ)′F̂ ,

in which VNcoT is a diagonal matrix that consists for the first r largest eigenvalues of the

(Nco ×Nco) matrix 1
NcoT

∑Nco

i=1(Yi −Xiβ)(Yi −Xiβ)′ and VNcoT = 1
Nco

Λ̂′coΛ̂co.
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A.4 Estimation Procedure for an Extended Model

Without loss of generality, we re-write Equation (2) as

Yit = δitDit + x′itβ + γ′ilt + z′iθt + λ′ift + αi + ξt + µ+ εit,

in which µ is the mean of control group outcomes, which allows us to impose two restrictions:∑Nco

i=1 αi = 0 and
∑Nco

i=1 ξi = 0. As before, we use three steps to impute the counterfactuals

for treated units. It can be written as

Yi = δi ◦Di +Xiβ + Lγi + Θzi + Fλi + αi1T + Ξ + µ1T + εi,

in which L = [l1, l2, · · · , lT ]′, a (T × q) matrix; Θ = [θ1, θ2, · · · , θT ]′, a (T ×m) matrix; and

Ξ = [ξ1, ξ2, · · · , ξT ]′, a (T × 1) vector. In the first step, we estimate an extended IFE model

using only the control group data and obtain β̂,F̂ ,Λ̂co, Ξ̂, Θ̂, γ̂i, and α̂i (for all i ∈ C) and µ̂:

Step 1.
(
β̂, F̂ , Θ̂, Ξ̂, Λ̂co, {γ̂i}, {α̂i}, µ̂

)
= argmin

β̃,F̃ ,Θ̃,Ξ̃,Λ̃co,{γ̃i},{α̃i},µ̂

∑
i∈C

ẽ′iẽi.

in which ẽi = Yi −Xiβ̃ − Lγ̃i − Θ̃zi − F̃ λ̃i − α̃i1T − Ξ̃− µ̃1T . The details of the estimation

strategy can be found in Bai (2009) Sections 8 and 10.

The second step estimates factor loadings, as well as additive unit fixed effects, for each

treated unit by minimizing the mean squared error of the treated units in the pre-treatment

period:

Step 2.
(
γ̂i λ̂i α̂i

)′
= argmin

(γ̃i λ̃i α̃i)′
e′iei

= (Ĝ0′Ĝ0)−1Ĝ0′(Y 0
i −X0

i β̂ − Θ̂0zi − Ξ̂0 − µ̂1T0), i ∈ T .

in which ei = Y 0
i −X0

i β̂−L0γ̃i−Θ̂0zi− F̂ 0λ̃i− α̃i− ξ̂0
t − µ̂; β̂, F̂ , Θ̂, Ξ̂ and µ̂ are from the first

step estimation; the superscripts “0”s denote the pre-treatment period; and Ĝ0 = (L0 F̂ 0 1T0)

is (L0 F̂ 0) augmented with a column of ones, a T0 × (q + r + 1) matrix.

In the third step, we calculate the counterfactual based on β̂, F̂ , λ̂i, α̂i, ξ̂t, and µ̂:

Step 3. Ŷit(0) = x′itβ̂ + γ̂′ilt + z′iθ̂t + λ̂′if̂t + α̂i + ξ̂t + µ̂, ∀i ∈ T .

A-5



A.5 Proofs of Main Results

We use the Frobenius norm throughout this paper, i.e., for any vector or matrix M , its norm

is defined as ‖M‖ =
√

tr(M ′M). I establish four lemmas before getting to the main results.

Lemma 1 (i) T−1/2‖F̂ 0‖ = Op(1); (ii) T‖(F̂ 0′F̂ 0)−1‖ = Op(1).

Proof: (i). Because tr(F̂ ′F̂ /T ) = r,

T−1/2‖F̂ 0‖ = T−1/2

√
tr(F̂ 0′F̂ 0) ≤ T−1/2

√
tr(F̂ ′F̂ ) =

√
r.

(ii). Denote Q =
∑T

s=T0+1 f̂sf̂
′
s, a symmetric and positive definite (r × r) matrix. Because

‖f̂tf̂ ′t‖ = Op(1) and there are only qi items in the summation, ‖Q‖ = Op(1). Since F̂ 0′F̂ 0 =

F̂ ′F̂ −Q = T · Ir −Q,

(F̂ 0′F̂ 0)−1 =
1

T
Ir + (I − 1

T
Q)−1 1

T 2
Q

Since Q is positive definite, ‖(F̂ 0′F̂ 0)−1‖ is strictly decreasing in T and is Op(T
−1).

Lemma 2 ‖β̂ − β‖ = Op(N
−1
co ) +Op(T

−1) + op
(
(NcoT )−1/2

)
.

Proof: Bai (2009) shows that under Assumptions 3 and 4 and when T/N2 → 0:

β̂ − β =D(F̂ )−1 1

NcoT

Nco∑
i=1

[X ′iMF −
1

Nco

Nco∑
k=1

aikX
′
kMF ]εi (1)

+
1

Nco

ξ +
1

T
ζ +

1√
NcoT

op(1),

where D(F̂ ) =
1

NcoT

Nco∑
i

Z ′iZi, Zi = MFXi −
1

Nco

Nco∑
k=1

MFXkaik,

ξ =−D(F̂ )−1 1

Nco

Nco∑
i=1

Nco∑
k=1

(Xi − Vi)′F
T

(
F ′F

T

)−1(
Λ′coΛco

Nco

)−1

λk

(
1

T

T∑
t=1

εitεkt

)
= Op(1),

ζ =−D(F̂ )−1 1

NT

Nco∑
i=1

X ′iMF̂ΩF̂

(
F ′F̂

T

)−1(
Λ′coΛco

Nco

)−1

λi = Op(1),

and aik = λ′i(Λ
′
coΛco/Nco)

−1λk, Vi = 1
Nco

∑Nco

k=1 aikXk,Ω = 1
Nco

∑Nco

k=1E(εkε
′
k). Therefore, β̂ is

an asymptotically unbiased estimator for β when both T and Nco are large and

‖β̂ − β‖ = Op(N
−1
co ) +Op(T

−1) + op
(
(NcoT )−1/2

)
.
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Lemma 3 Denote H =
(

Λ′
coΛco

Nco

)(
F ′F̂
T

)
V −1
NcoT

.

(i). ‖ft −H−1f̂t‖ = Op(N
−1/2
co ) +Op(T

−1/2);

(ii). ‖f ′t − f̂t
′
(F̂ 0′F̂ 0)−1F̂ 0′F 0‖ = Op(N

−1/2
co ) +Op(T

−1/2).

Proof: (i). The main logic of this proof follows Bai (2009) Proposition A.1 (p. 1266).

Because [
1

NcoT

Nco∑
i

(Yi −Xi)(Yi −Xi)
′

]
F̂ = F̂ VNcoT

and Yi−Xiβ̂ = Xi(β− β̂) +Fλi+ εi, by expanding the terms on the left-hand side, we have:

F̂ VNcoT =
1

NcoT

Nco∑
i

Xi(β − β̂)(β − β̂)′X ′iF̂ +
1

NcoT

Nco∑
i=1

Xi(β − β̂)λ′iF
′F̂

+
1

NcoT

Nco∑
i=1

Xi(β − β̂)ε′F̂ +
1

NcoT

Nco∑
i=1

Fλi(β − β̂)′X ′iF̂ +
1

NcoT

Nco∑
i=1

εi(β − β̂)′X ′iF̂

+
1

NcoT

Nco∑
i=1

Fλiε
′
iF̂ +

1

NcoT

Nco∑
i=1

εiλ
′
iF
′F̂ +

1

NcoT

Nco∑
i=1

εiε
′
iF̂ + F

(
Λ′coΛco

Nco

)(
F ′F̂

T

)
.

with the last term on the right-hand side equal to 1
NcoT

∑Nco

i=1 Fλiλ
′
iF
′F̂ . Denote G =(

F ′F̂
T

)−1 (
Λ′
coΛco

Nco

)−1

. After re-arranging the terms and focusing on period t, we have:

H−1f̂t − ft =
1

NcoT

Nco∑
i

GF̂ ′X ′i(β − β̂)(β − β̂)′xit +
1

NcoT

Nco∑
i=1

GF̂ ′Fλi(β − β̂)′xit

+
1

NcoT

Nco∑
i=1

GF̂ ′εi(β − β̂)′xit +
1

NcoT

Nco∑
i=1

GF̂ ′X ′i(β − β̂)λ′ift

+
1

NcoT

Nco∑
i=1

GF̂ ′Xi(β − β̂)εit +
1

NcoT

Nco∑
i=1

GF̂ ′εiλ
′
ift

+
1

NcoT

Nco∑
i=1

GF̂ ′Fλiεit +
1

NcoT

Nco∑
i=1

GF̂ ′εiεit

= a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8,

The proof of ‖(F ′F̂
T

)−1‖ = Op(1) is provided in Bai (2003) Proposition 1. Assumption 4

implies ‖(Λ′
coΛco

Nco
)−1‖ = Op(1), therefore, ‖G‖ = Op(1). Also from Assumption 4, we know

that ‖xit‖ = Op(1), T−1/2‖Xi‖ = Op(1), N
−1/2
co ‖Λco‖ = Op(1). Together with the facts that

T−1/2‖F‖ = Op(1) and T−1/2‖F̂‖ =
√
r, we have:
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‖a1‖ ≤ ‖G‖
‖F̂‖√
T

1

Nco

Nco∑
i

(
‖Xi‖√
T
‖xit‖

)
‖β − β̂‖2 = Op(‖β − β̂‖2)

Similarly, we can show that each of a2, a3, a4, and a5 is Op(β − β̂).

‖a2‖ ≤ ‖G‖‖F̂‖√
T

‖F‖√
T

1

Nco

Nco∑
i=1

(‖λi‖‖xit‖) ‖β − β̂‖ = Op(‖β − β̂‖)

‖a3‖ ≤ ‖G‖‖F̂‖√
T

1

Nco

Nco∑
i=1

(
‖εi‖√
T
‖xit‖

)
‖β − β̂‖ = Op(‖β − β̂‖)

‖a4‖ ≤ ‖G‖‖F̂‖√
T

1

Nco

Nco∑
i=1

(
‖Xi‖√
T
‖λ′ift‖

)
‖β − β̂‖ = Op(‖β − β̂‖)

‖a5‖ ≤ ‖G‖‖F̂‖√
T

1

Nco

Nco∑
i=1

(
‖Xi‖√
T
‖εit‖

)
‖β − β̂‖ = Op(‖β − β̂‖)

Moreover, a6 and a7 are both Op(N
−1/2).

‖a6‖ =
1

NcoT
‖GF̂ ′εΛ′coft‖ ≤

1√
Nco

‖G‖‖F̂‖√
T

‖ε‖√
T

‖Λco‖√
Nco

‖ft‖ = Op(N
−1/2
co )

‖a7‖ ≤
1√
Nco

‖G‖‖F̂‖√
T

‖F‖√
T

√√√√ 1

Nco

Nco∑
i=1

‖λiεit‖2 = Op(N
−1/2
co )

Finally, Denote f̃t = Gft, t = 1, 2, · · · , T ,

a8 =
1

T

T∑
s=1

(
f̃t

1

Nco

Nco∑
i=1

εisεit

)

=
1

T

T∑
s=1

(
f̃t

1

Nco

Nco∑
i=1

[εisεit − E(εisεit)]

)
− 1

T

T∑
s=1

(
f̃tE(εisεit)

)
= b1 + b2

Because E(εisεit) is bounded according to Assumption 4.2,

‖b2‖ ≤
1√
T
‖G‖‖F‖√

T
M = Op(T

−1/2).
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On the other hand,

‖b1‖ ≤
1√
Nco

‖G‖‖F̂‖√
T

√√√√ 1

T

T∑
s=1

1

Nco

Nco∑
i=1

|εitεis − E(εitεis)|2 = Op(N
−1/2
co )

Therefore, a8 = Op(N
−1/2
co ) +Op(T

−1/2).

Because ‖β − β̂‖ = Op(N
−1
co ) +Op(T

−1) + op
(
(NcoT )−1/2

)
according to Lemma 2,

‖ft −H−1f̂t‖ = Op(‖β − β̂‖) +Op(N
−1/2
co ) = Op(N

−1/2
co ) +Op(T

−1/2).

(ii). By subtracting H−1f̂t from ft − F ′F̂ (F̂ ′F̂ )−1f̂t and then adding it back, we have:

ft − F ′F̂ (F̂ ′F̂ )−1f̂t = (ft −H−1f̂t)− (F ′ −H−1F̂ ′)F̂ (F̂ ′F̂ )−1f̂t

Because T−1/2‖F−H−1F̂‖ = Op(N
−1/2
co )+Op(T

−1/2) (Bai 2009, p. 1268) and ‖F̂ (F̂ ′F̂ )−1f̂t‖ =

Op(T
−1/2),

‖ft − F ′F̂ (F̂ ′F̂ )−1f̂t‖ ≤ ‖ft −H−1f̂t‖+ ‖(F ′ −H−1F̂ ′)F̂ (F̂ ′F̂ )−1f̂t‖

≤ ‖ft −H−1f̂t‖+ ‖F ′ −H−1F̂ ′‖‖F̂ (F̂ ′F̂ )−1f̂t‖

= Op(N
−1/2
co ) +Op(T

−1/2)

It is worth noting that if E(εisεit) = 0 for any i and all (s, t), then

‖ft − F ′F̂ (F̂ ′F̂ )−1f̂t‖ = Op(N
−1/2
co ) +Op(T

−1).

Lemma 4 ‖F ′F̂ (F̂ ′F̂ )−1 − F 0′F̂ 0(F̂ 0′F̂ 0)−1‖ = op(T
−1
0 ).

Proof: Denote A = F ′F̂ and B = F ′F̂ − F 0′F̂ 0. Both are (r × r) matrices. ‖B‖ =

‖
∑T

s=T0
fsf̂

′
s‖ = Op(1). Recall Q = F̂ ′F̂ − F̂ 0′F̂ 0 and F̂ ′F̂ /T = Ir.

F ′F̂ (F̂ ′F̂ )−1 − F 0′F̂ 0(F̂ 0′F̂ 0)−1

=
1

T
A− (A−B)

[
1

T
Ir + (I − 1

T
Q)−1 1

T 2
Q

]
=

1

T
B − (A−B)(I − 1

T
Q)−1 1

T 2
Q

The second term on the right isOp(T
−1) because T−1‖A−B‖ = Op(1). Therefore, ‖F ′F̂ (F̂ ′F̂ )−1−

F 0′F̂ 0(F̂ 0′F̂ 0)−1‖ = Op(T
−1).
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Proposition 1 (Limit of Bias) Under Assumptions 1-4, Eε(ÂTT t|D,X,Λ, F )→ATTt, in
which ATTt = 1

Ntr

∑
i∈T δit, for all t > T0, as both Nco and T0 →∞.

Proof : Denote i as the treated unit on which the treatment effect is of interest. From

Yit = x′itβ + λ′ift + εit and λ̂i = (F̂ 0′F̂ 0)−1F̂ 0′(Y 0
i −X0

i β̂), we have:

δ̂it − δit = Yit − Ŷit(0)− δit
= x′it(β − β̂) + (λ′ift − λ̂′if̂t) + εit

= x′it(β − β̂) +
{
λ′ift − [X0

i (β − β̂) + F 0λi + ε0
i ]
′F̂ 0(F̂ 0′F̂ 0)−1f̂t

}
+ εit

=
[
x′it − f̂ ′t(F̂ 0′F̂ 0)−1F̂ 0′X0

i

]
(β − β̂) + λ′i

[
ft − F 0′F̂ 0(F̂ 0′F̂ 0)−1f̂t

]
+[

−f̂ ′t(F̂ 0′F̂ 0)−1F̂ 0′ε0
i

]
+ εit

= R1,it +R2,it +R3,it + εit, t = 1, 2, · · · , T ; ∀i ∈ T .

Eε(εit|D,X,Λ, F ) = 0 by Assumption 2. Following a similar logic in Abadie, Diamond and

Hainmueller (2010), R3,it can be written as:

R3,it = −
∑T0

s=1 f̂
′
t

(∑T0
l=1 f̂lf̂

′
l

)−1

f̂sεis

in which
(∑T0

l=1 f̂lf̂
′
l

)−1

is symmetric and positive definite. Applying the Cauchy-Schwarz

Inequality, we have |f̂ ′t
(∑T0

l=1 f̂lf̂
′
l

)−1

f̂s| ≤ O(T−1
0 ). Because the second moment for εit

exists (Assumption 3), applying the Rosenthal’s Inequality, we have:

Eε(|R3,it|2|D,X,Λ, F ) ≤ O(T−2
0 )

∑T0
s=1 E|εis|2 = O(T−1

0 ).

Hence, Eε(|R3,it| |D,X,Λ, F ) ≤ O(T
−1/2
0 ), which means the bias from R3,it is bounded by a

function that goes to zero as the number of pre-treatment periods grows.

Next, we investigate biases from R1,it and R2,it. R1,it is the source of bias from imprecise

estimation of β, which results in both a direct effect on the amount of bias through xit and

an indirect effect through the estimation of the factor loading λi. R2,it is the source of bias

directly from the influence of the factors λ′ift. Our objective is to characterize (and bound)

both Eε(R1,it) and Eε(R2,it). By Lemma 2 and ‖x′it − f̂ ′t(F̂ 0′F̂ 0)−1F̂ 0′X0
i ‖ = Op(1) and

|R1,it| = Op(‖β − β̂‖) = Op(N
−1
co ) +Op(T

−1) + op
(
(NcoT )−1/2

)
.

Using both Lemma 3 and Lemma 4, we have:

‖ft − F 0′F̂ 0(F̂ 0′F̂ 0)−1f̂t‖ ≤ ‖ft − F ′F̂ (F̂ ′F̂ )−1f̂t‖+ ‖F ′F̂ (F̂ ′F̂ )−1f̂t − F 0′F̂ 0(F̂ 0′F̂ 0)−1f̂t‖

= Op(N
−1/2
co ) +Op(T

−1/2
0 ).
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Therefore, |R2,it| ≤ ‖λi‖‖ft − F 0′F̂ 0(F̂ 0′F̂ 0)−1f̂t‖ = Op(N
−1/2
co ) +Op(T

−1/2
0 ).

As both Nco and T0 go to infinity, Op(N
−1/2
co ) +Op(T

−1/2
0 ) becomes op(1). In other words,

R1,it + R2,it is bounded in probability by a function that goes to zero. By the moment

conditions specified in Assumptions 3 and 4, R1,it + R2,it is uniformly integrable, therefore,

convergence in probability implies convergence in means (DasGupta 2008, Ch. 6), i.e.,

Eε(|R1,it +R2,it| |D,X,Λ, F ) = o(1), as Nco, T0 →∞. Therefore,

Eε(ÂTT t − ATTt|D,X,Λ, F ) = N−1
tr · o(1),

In other words, the bias of the estimator shrinks to zero as both Nco and T0 increase.
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B Simulation Results

B.1 Additional Results on The Simulated Example

Figures A2 shows the estimated factors and factor loadings based on the simulated sample.

In Figure A2(b), plots on the diagonal show the distributions of estimated factor loadings

for the control group (density plot) and the treatment group (dashed lines); plots off the

diagonal are scatter-plots of the factor loadings in which solid and hollow circles represent

units in the treatment group and the control group, respectively.

Figure A2. Estimated Factors and Factor Loadings:
A Simulated Sample
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(b) Estimated factor loadings

Figure A3 presents the imputed counterfactual and individual treatment effect for each

treated units.
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Figure A3. Estimated Individual Treatment Effect: A Simulated Sample
Ntr = 5, Nco = 45, T = 30, T0 = 10
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B.2 Finite Sample Properties

Table A1 explores the finite sample properties of the GSC estimate. It presents the bias,

standard deviation, and root mean square error of ÂTT T0+5 with different combinations of

Ntr, Nco, and T0. It shows that the GSC estimator has limited bias when both Nco and T0

are large. Each set of numbers is based on 5,000 simulated samples.

The data generating process (DGP) is the same as described in the main text, with

w = 0.8 which produces positive correlations among the treatment indicator, factor loadings,

the regressors. For each set of simulations, the treatment effects, regressors, factors, and

factor loadings are drawn only once, while the error terms are drawn repeatedly.

Table A1. Finite Sample Properties

Ntr = 1 Ntr = 5 Ntr = 20
T0 Nco Bias SD RMSE Bias SD RMSE Bias SD RMSE

15 40 0.023 1.163 1.163 0.053 0.589 0.591 0.013 0.375 0.375
15 80 -0.031 1.159 1.159 0.017 0.535 0.536 0.010 0.310 0.310
15 120 0.008 1.143 1.143 0.010 0.524 0.524 0.003 0.294 0.294
15 200 -0.004 1.154 1.154 0.011 0.518 0.518 0.004 0.278 0.278

30 40 -0.007 1.089 1.089 0.046 0.538 0.540 0.013 0.351 0.351
30 80 0.012 1.074 1.074 0.021 0.504 0.505 0.011 0.293 0.294
30 120 -0.000 1.072 1.071 0.024 0.494 0.495 0.012 0.275 0.275
30 200 0.005 1.083 1.083 0.008 0.487 0.487 0.002 0.263 0.263

50 40 -0.014 1.072 1.072 0.031 0.519 0.520 0.004 0.342 0.342
50 80 0.014 1.039 1.039 0.016 0.497 0.498 0.006 0.277 0.277
50 120 -0.014 1.039 1.039 0.003 0.475 0.475 0.005 0.261 0.261
50 200 0.013 1.032 1.032 0.016 0.468 0.469 0.005 0.254 0.254
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B.3 Comparison with the DID Estimator

Table A2 compares the GSC and DID estimates (i.e., two-way fixed effects plus 10 dummies

indicating 10 periods after T0. It presents the bias, standard deviation, and root mean

square error of ÂTT T0+5 with different combinations of Nco and w. It shows that, in the

presence time-varying confounders, even when the treatment is randomly assigned (w = 1),

the DID estimator can have considerable bias due to the imbalance of λi between treatment

and control groups—the size of the bias depends on the particular draw of λi (and hence

Xi). Even when the treatment is not randomly assigned (w < 1), the bias of GSC estimates

remains small.

The data generating process (DGP) is the same as described in the main text. For each

set of simulations, the treatment effects, regressors, factors, and factor loadings are drawn

only once, while the error terms are drawn repeatedly. In the case of w = 1, the bias of

the DID estimator will go away once we marginalize out λi (i.e., if we draw λi for each unit

repeatedly).

Table A2. Comparision with the Difference-in-Differences Esitmator

GSC DID
T0 Ntr Nco w Bias SD RMSE Bias SD RMSE

15 20 40 1.00 0.023 0.326 0.327 0.462 0.282 0.541
15 20 80 1.00 0.014 0.287 0.287 0.068 0.256 0.264
15 20 120 1.00 0.007 0.282 0.283 0.363 0.253 0.443
15 20 200 1.00 0.009 0.271 0.271 0.409 0.243 0.476

15 20 40 0.80 0.024 0.378 0.378 -0.012 0.285 0.285
15 20 80 0.80 0.004 0.310 0.310 0.037 0.258 0.261
15 20 120 0.80 0.007 0.293 0.293 0.240 0.248 0.345
15 20 200 0.80 0.013 0.280 0.281 0.281 0.244 0.372

15 20 40 0.60 0.000 0.494 0.494 -0.031 0.286 0.287
15 20 80 0.60 0.003 0.368 0.368 -0.257 0.257 0.364
15 20 120 0.60 0.008 0.354 0.354 -0.198 0.253 0.321
15 20 200 0.60 0.011 0.317 0.317 -0.237 0.244 0.340
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B.4 Comparison with the IFE Estimator

The GSC estimator corrects biases of the IFE estimator when the treatment effect is hetero-

geneous. When the treatment effect is constant, the IFE estimator is more efficient because it

uses information of both the treatment and control groups to estimate covariate coefficients

and factors while the proposed method uses the control group information only. When the

treatment effect is heterogeneous, however, using IFE models that assume constant treat-

ment effect will lead to biased estimates because heterogeneities of the treatment effect will

cause inconsistent estimation of the factor space.

Results from Monte Carlo exercises are consistent with the above intuition. Table A3

compares the performances of the GSC estimator and the IFE estimator. It presents the

bias, standard deviation, and root mean square error of ÂTT T0+5 with different combinations

of Nco and the standard deviation of the treatment effect SE(δit). The DGP is as specified in

the main text with w set to 1. The IFE model to be estimated uses the following specification:

Yit =
∑T

t=T0+1 δtDit + x′itβ + λ′iFt + αi + ξt + εit,

which allows the treatment effects to be different over time. Table A3 shows that (1) when

the treatment effect is constant across units, both estimators have limited bias. The efficiency

gain of the IFE estimator is small when Ntr is relatively small. (2) when the treatment effect

is heterogeneous, the bias of the GSC estimates remains small while the bias of of the IFE

estimates is no longer negligible.

Table A3. Comparision with the Interactive Fixed-Effect Estimator

GSC IFE
T0 Nco Ntr SE(δit) Bias SD RMSE Bias SD RMSE

15 20 40 0 0.027 0.329 0.330 0.000 0.328 0.328
15 20 80 0 0.007 0.291 0.291 -0.004 0.290 0.290
15 20 120 0 0.003 0.285 0.285 -0.003 0.285 0.285
15 20 200 0 0.008 0.268 0.268 0.003 0.268 0.268

15 20 40 5 0.019 0.330 0.331 0.136 1.440 1.446
15 20 80 5 0.015 0.287 0.287 -0.547 0.469 0.720
15 20 120 5 0.008 0.275 0.275 0.107 0.269 0.290
15 20 200 5 0.007 0.271 0.271 -0.120 0.282 0.306
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B.5 Comparison with the Synthetic Matching Method

The synthetic control method proposed by Abadie, Diamond and Hainmueller (2010) requires

that both covariates and factor loadings of the treated unit is in the convex hull of those of

the donors from the control group. The method may fail to construct a synthetic control

unit when this requirement is not met. In this way, it safeguards against unwarranted

extrapolations that may lead to biased estimates of the treatment effect.

The GSC method, however, does not have this requirement–in this sense, it is less con-

servative in terms of imputing treated counterfactuals. First, like DID, it allows for an

intercept shift when additive unit fixed effects are assumed. Second, it incorporates observ-

able covariates by imposing parametric assumptions. Third, in the lack of common support

of factor loadings between the treated and control groups, it extrapolates the influence of the

factors on the treated outcome based on the assumed model. When the model is correct,

the GSC estimator is expected to be more efficient than the synthetic matching method

because it potentially uses more information: (1) no control units are discarded and even

negative correlations between the treated and control units are used for the prediction of

treated counterfactuals; (2) when the model specifies more than one unobserved factors, a

control unit at different time periods is assigned different weights. To be more precise, the

control units are first decomposed into several components (factors) and these components

are re-weighted to produce treated counterfactuals. When the model is incorrect, however,

such extrapolations cause biases. Therefore, when applying the GSC method, it is helpful

to plot the estimated factors and factor loadings to avoid excessive extrapolations.

Table A4 compares the GSC method with the original synthetic control method (labelled

as Synth) and confirms our expectation. It presents the bias, standard deviation, and root

mean square error of ÂTT T0+5 with different combinations of r and w, a parameter that

characterizes the overlap of support of factor loadings (including unit fixed effects) between

the treated and control units. The DGP is the same as described in the main text. Note

that for each set of simulations, the factors are drawn only once, while the treatment effect,

regressors, factor loadings, and error terms are drawn repeatedly.

Table A4 shows that when the model is correct and the treated and control units shares a

common support of factor loadings, both methods have limited bias while the GSC estimator

is more efficient. In our setup, there is a small chance that the synthetic matching method

may fail to construct a synthetic control unit. The chances may become high when Nr is

bigger. As the overlap of support between treated and control units diminishes, significant

bias shows up for the original synthetic matching method while the bias of the GSC method

remains small.
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Table A4. Comparison with the Synthetic Control Estimator (ADH 2010)

GSC Synth

T0 Ntr Nco r w Bias SD RMSE Fail Bias SD∗ RMSE∗ Fail

15 1 40 1 1.00 -0.010 1.494 1.107 0.000 -0.011 1.739 1.417 0.013
15 1 40 2 1.00 0.000 1.571 1.190 0.000 -0.022 2.029 1.738 0.008
15 1 40 3 1.00 -0.003 1.581 1.220 0.000 0.021 2.368 2.151 0.014
15 1 40 4 1.00 0.013 1.610 1.253 0.000 -0.013 2.345 2.122 0.016

15 1 40 2 0.75 0.014 1.595 1.234 0.000 0.707 2.096 1.975 0.016
15 1 40 2 0.50 0.026 1.602 1.257 0.000 1.331 2.327 2.489 0.014
15 1 40 2 0.25 0.000 1.729 1.391 0.000 1.630 2.492 2.803 0.016
15 1 40 2 0.00 0.033 1.822 1.521 0.000 2.127 2.610 3.199 0.012
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B.6 Model Selection

So far we have shown that when the factor model is correctly specified, the GSC estimator

performs well in small samples and have advantages over the DID estimator, the synthetic

matching method, and the IFE estimator under various circumstances. In this section, we

investigate whether the cross-validation scheme proposed earlier in this paper is able to select

the correct number of factors when it is unknown and whether the GSC method is robust

to a misspecified number of factors.

Table A5. Choices of the Number of Factors

Ntr = 5 Ntr = 20 Ntr = 40
T0 Nco rX rX rX

10 40 0.801 0.938 0.953
30 40 0.921 0.985 0.991
50 40 0.943 0.990 0.996

15 40 0.879 0.976 0.991
15 80 0.896 0.992 0.998
15 120 0.895 0.995 0.999

Note: Each number is based on 5,000 simulated samples.

We conduct simulations using the same DGP specified in Equation (3) (with w = 0.5)

and let the algorithm choose the number of factors automatically. Table A5 shows the

percentage of correct choices of the number of factors with different sample size from 5,000

simulations for each case. It suggests that when the sample is reasonably large, with a high

chance the cross-validation scheme can choose the number of factors correctly. For example,

when T0 = 30, Nco = 40 and Ntr = 5, the cross-validation algorithm correctly chooses the

number of factors 92.1% of the time; the number increases to 98.5% when Ntr = 20. Note

that the number of treated units Ntr matters because a larger treatment group provide more

data for validation.

In Figure A4, we choose four cases (with different combinations of T0, Nco, and Ntr) and

plot the MSPEs of six models, including pooled OLS, the two-way fixed effects model, and

the GSC method with 1 to 5 factors (shown on the x-axis), with 5,000 simulations for each

case. Results from all simulations are represented with gray lines. The black solid line shows

the median MSPE of 5,000 simulations with each model. These figures show that the median

MSPE is always the lowest with the correct number of factors, i.e., r = 2.
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Figure A4. Choice of the Number of Factors: Four Cases
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C Additional Results on EDR Laws and Turnout

Table A6 lists the years during which EDR laws were enacted and first took effect in pres-

idential elections for the 9 treated states.

Table A6. State EDR Laws

State Enacted Took effect
Maine 1973 1976
Minnesota 1974 1976
Wisconsin 1975 1976
Wyoming 1994 1996
Idaho 1994 1996
New Hampshire 1996 1996
Montana 2005 2008
Iowa 2007 2008
Connecticut 2012 2012

Figure A5 shows the raw data of state-level turnout rates (%) in US presidential elections

in 47 states from 1920 to 2012. Turnout rates of 38 states that had not adopted EDR laws

(controls) are in gray. For the 9 states in which EDR laws took effect before 2012 (treated),

the pre- and post-EDR periods are represented by black solid lines and black dashed lines,

respectively.

Figure A5. EDR and State-level Turnout: Raw Data
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Figure A6 shows the imputed counterfactuals and estimated individual treatment effect

produced by both the DID and GSC estimators for each of the 9 states that enacted EDR

laws before the 2012 presidential election. The shades represent the 95% confidence intervals

for the treatment effects produced by the GSC method.

Figure A6. The Effect of EDR on Turnout: Individual Cases
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