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G

• Interpretation

‣ Descriptively: “the rise in the mortality rate during the famine 
years is significantly smaller in counties with higher social 
capital”

‣ Causally: “we interpret these differences as the effects of social 
capital on famine relief.”
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Catholicism  Industrial Revolution×

Elite Stronghold  State-building Reform×
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More Examples

Same DID Estimator, A Different Research Design  
“Factorial Difference-in-Differences”

• Factorial 

‣ classic topic in statistics 

‣ factorial experiments pioneered by R. A. Fisher 
and F. Yates 

‣ two treatment factors: their main effects and 
interaction are of interest

• Difference-in-differences 

‣ popular in economics and related fields 

‣ a “research design” for causal inference with 
observational data 

‣ leverage panel data (units × times) to identify 
causal effects



This Paper

Motivation Setup & Estimands Identification Extensions Empirical Example Conclusion



This Paper

• Factorial DID is a different research design from a canonical DID

Motivation Setup & Estimands Identification Extensions Empirical Example Conclusion



This Paper

• Factorial DID is a different research design from a canonical DID

Setting, Estimand, Estimator,  
ID Assumptions & ID Results

Motivation Setup & Estimands Identification Extensions Empirical Example Conclusion



This Paper

• Factorial DID is a different research design from a canonical DID Canonical DID

Y

Pre-Event Post-Event

Gi = 0

Time

Gi = 1

Setting, Estimand, Estimator,  
ID Assumptions & ID Results

Motivation Setup & Estimands Identification Extensions Empirical Example Conclusion



Unexposed

Exposed

This Paper

• Factorial DID is a different research design from a canonical DID Canonical DID

Y

Pre-Event Post-Event

Gi = 0

Time

Gi = 1

Setting, Estimand, Estimator,  
ID Assumptions & ID Results

Motivation Setup & Estimands Identification Extensions Empirical Example Conclusion



Unexposed

Exposed

This Paper

• Factorial DID is a different research design from a canonical DID Canonical DID

Y

Pre-Event Post-Event

Gi = 0

Time

Gi = 1 ̂τDID}

Setting, Estimand, Estimator,  
ID Assumptions & ID Results

Motivation Setup & Estimands Identification Extensions Empirical Example Conclusion



This Paper

• Factorial DID is a different research design from a canonical DID

Exposed

Exposed

Factorial DID

Y

Pre-Event Post-Event

Gi = 0

Time

Gi = 1

Motivation Setup & Estimands Identification Extensions Empirical Example Conclusion

Setting, Estimand, Estimator,  
ID Assumptions & ID Results



This Paper

• Factorial DID is a different research design from a canonical DID

Exposed

Exposed

Factorial DID

Y

Pre-Event Post-Event

Gi = 0

Time

Gi = 1
• Under no anticipation & parallel trends, the DID estimator 

identifies treatment effect heterogeneity of the event 

Motivation Setup & Estimands Identification Extensions Empirical Example Conclusion

Setting, Estimand, Estimator,  
ID Assumptions & ID Results



This Paper

• Factorial DID is a different research design from a canonical DID

Exposed

Exposed

Factorial DID

Y

Pre-Event Post-Event

Gi = 0

Time

Gi = 1
• Under no anticipation & parallel trends, the DID estimator 

identifies treatment effect heterogeneity of the event 

Motivation Setup & Estimands Identification Extensions Empirical Example Conclusion

Setting, Estimand, Estimator,  
ID Assumptions & ID Results



This Paper

• Factorial DID is a different research design from a canonical DID

Exposed

Exposed

Factorial DID

Y

Pre-Event Post-Event

Gi = 0

Time

Gi = 1 ̂τDID}
• Under no anticipation & parallel trends, the DID estimator 

identifies treatment effect heterogeneity of the event 

Motivation Setup & Estimands Identification Extensions Empirical Example Conclusion

Setting, Estimand, Estimator,  
ID Assumptions & ID Results



This Paper

• Factorial DID is a different research design from a canonical DID

Exposed

Exposed

Factorial DID

Y

Pre-Event Post-Event

Gi = 0

Time

Gi = 1 ̂τDID}
• Under no anticipation & parallel trends, the DID estimator 

identifies treatment effect heterogeneity of the event 

‣ Not causal 

Motivation Setup & Estimands Identification Extensions Empirical Example Conclusion

Setting, Estimand, Estimator,  
ID Assumptions & ID Results



This Paper

• Factorial DID is a different research design from a canonical DID

Exposed

Exposed

Factorial DID

Y

Pre-Event Post-Event

Gi = 0

Time

Gi = 1 ̂τDID}
• Under no anticipation & parallel trends, the DID estimator 

identifies treatment effect heterogeneity of the event 

‣ Not causal 

‣ Need additional analytical tools (factorial designs) to clarify

Motivation Setup & Estimands Identification Extensions Empirical Example Conclusion

Setting, Estimand, Estimator,  
ID Assumptions & ID Results



This Paper

• Factorial DID is a different research design from a canonical DID

Exposed

Exposed

Factorial DID

Y

Pre-Event Post-Event

Gi = 0

Time

Gi = 1 ̂τDID}
• Under no anticipation & parallel trends, the DID estimator 

identifies treatment effect heterogeneity of the event 

‣ Not causal 

‣ Need additional analytical tools (factorial designs) to clarify

‣ With covariates, common TWFE models need modificaiton

Motivation Setup & Estimands Identification Extensions Empirical Example Conclusion

Setting, Estimand, Estimator,  
ID Assumptions & ID Results



This Paper

• Factorial DID is a different research design from a canonical DID

Exposed

Exposed

Factorial DID

Y

Pre-Event Post-Event

Gi = 0

Time

Gi = 1 ̂τDID}

• Identifying ’s causal effect requires stronger assumptionsG

• Under no anticipation & parallel trends, the DID estimator 
identifies treatment effect heterogeneity of the event 

‣ Not causal 

‣ Need additional analytical tools (factorial designs) to clarify

‣ With covariates, common TWFE models need modificaiton

Motivation Setup & Estimands Identification Extensions Empirical Example Conclusion

Setting, Estimand, Estimator,  
ID Assumptions & ID Results



This Paper

• Factorial DID is a different research design from a canonical DID

Exposed
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Factorial DID

Y

Pre-Event Post-Event
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Time

Gi = 1 ̂τDID}

• Identifying ’s causal effect requires stronger assumptionsG

• Factorial DID includes canonical DID as a special case with an 
additional assumption

• Under no anticipation & parallel trends, the DID estimator 
identifies treatment effect heterogeneity of the event 

‣ Not causal 

‣ Need additional analytical tools (factorial designs) to clarify

‣ With covariates, common TWFE models need modificaiton
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Related Literature
• DID and TWFE 

‣ “Regression DD”: Card (1992); Angrist & Pischke (2009); Shahn & Hatfield (2024) 

‣ For reviews of recent development: Roth et al. (2023); Chiu et al. (2023); Arkhangelsky and Imbens (2023) 

• Factorial designs 
‣ VanderWeele (2009); Dasgupta et al (2015); Bansak (2020); Zhao and Ding (2021) 

• Bartik instruments & shift shares (e.g., local industry share  common temporal shock) 
‣ e.g. Paul Goldsmith-Pinkham et al. (2020); Borusyak, Hull & Jaravel (2022)  

• Lord’s paradox 
‣ Lord (1967); Holland and Rubin (1986)
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Social capital reduced mortality increase caused by the famine.
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A statistical estimand 

consistently estimated by  ̂τDID

τem
An associative estimand 

describing effect heterogeneity
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A causal estimand  
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A causal estimand 
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Identification under Canonical DID Assumptions
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Under no anticipation and parallel trends, 

 .τDID = τem = 𝔼[τi,Z∣G=1 ∣ Gi = 1] − 𝔼[τi,Z∣G=0 ∣ Gi = 0]

Proposition

𝔼[ΔYi(1,0) ∣ Gi = 1] = 𝔼[ΔYi(0,0) ∣ Gi = 0]
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Reconciling Canonical and Factorial DID
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  = τatt = 𝔼[Yi,post(1,1) − Yi,post(1,0) ∣ Gi = 1]

Factorial DID  Canonical DID  →
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Pre Post

Gi = 0

Time

Gi = 1 }    τDID

 for all units with Yi,post(0,1) = Yi,post(0,0) Gi = 0

Exclusion Restriction on Z

Under no anticipation, parallel trends, and the 

exclusion restriction,  .τDID = τatt

Proposition

Reconciling Canonical and Factorial DID
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Why  May Not Identify Causal Moderation under Parallel Trends? τDID
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Why  May Not Identify Causal Moderation under Parallel Trends? τDID

• Imagine an unobservable  that determines 
how units respond to the event
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•  may be correlated with U G

}
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  τinter = 𝔼[Yi,post(1,1) − Yi,post(1,0)]

   −𝔼[Yi,post(0,1) − Yi,post(0,0)]
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Weaker than (quasi-)random assignment:     Yi,t(g, z) ⊥⊥ Gi

 for all units with   Yi,post(1,0) = Yi,post(0,0) Zi = 0

Exclusion Restriction on G

⇒ τinter = 𝔼[Yi,post(1,1) − Yi,post(0,1)] = τG∣Z=1



Summary of identification Results

τDID
A statistical estimand 

consistently estimated by  ̂τDID

No anticipation & 
Parallel trends τem

An associative estimand 
describing effect heterogeneity

τinter
A causal estimand  

targeting causal moderation

Exclusion restriction on Z 
for G = 0
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targeting the effect of Z 
for G = 1
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A causal estimand 

targeting the effect of G 
when Z = 1
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Canonical vs Factorial DID, Two Research Designs

Motivation Setup & Estimands Identification Extensions Empirical Example Conclusion



Canonical vs Factorial DID, Two Research Designs

Define canonical DID research design as the combination of: 

•  data structure 

• Identification results: 

‣ Under no anticipation & parallel trends,  identifies 

2 × 2

̂τDID τatt

Canonical DID (original)
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Canonical vs Factorial DID, Two Research Designs

Define canonical DID research design as the combination of: 

•  data structure & universal exposure 

• Identification results: 

‣ Under no anticipation & parallel trends & exclusion restriction on ,  identifies 
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Canonical vs Factorial DID, Two Research Designs

Define factorial DID research design as the combination of: 

•  data structure & universal exposure 

• Identification results: 

1. Under no anticipation & parallel trends,  identifies  

2. Under no anticipation & parallel trends & ,   identifies  

3. Under no anticipation & parallel trends &  & exclusion restriction on ,   identifies 

2 × 2

̂τDID τem

ΔYi(g, z) ⊥⊥ Gi ̂τDID τinter

ΔYi(g, z) ⊥⊥ Gi G ̂τDID τG∣Z=1

Factorial DID

Define canonical DID research design as the combination of: 

•  data structure & universal exposure 

• Identification results: 

‣ Under no anticipation & parallel trends & exclusion restriction on ,  identifies 

2 × 2

Z ̂τDID τatt

Canonical DID (reframed)
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Lord’s Paradox
“A large university is interested in investigating the effects on the 
students of the diet provided in the university dining halls and any sex 
differences in these effects ... [t]he weight of each student at the time of 
his (/her) arrival in September and his weight the following June are 
recorded.” (Lord 1967, p. 304)
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Lord’s Paradox

• Statistician 1: zero effect for both groups because average weight 
does not changeeitherbgroup

• Statistician 2: larger effect on male students (6.34) from: 
Yi,post ∼ 1 + malei + Yi,pre

• Resolution 

‣ Holland and Rubin (1986): Untestable assumptions on  

‣ Statistician 1:  

‣ Statistician 2:  

‣ Statistician 3 (Factorial DID): Under no anticipation & parallel trends, 

Yi,post(g,0)
Yi,post(g,0) = Yi,pre

Yi,post(g,0) = βYi,pre + γg

τem = τDID = 0

“A large university is interested in investigating the effects on the 
students of the diet provided in the university dining halls and any sex 
differences in these effects ... [t]he weight of each student at the time of 
his (/her) arrival in September and his weight the following June are 
recorded.” (Lord 1967, p. 304)



Roadmap
• Motivation 

• Setup & Estimands 

• Identification 

• Extensions 

‣ Conditionally valid assumptions 

‣ *Multiple pre- and post- periods 

‣ *Multi-valued  

• Example: Clans and Calamity

G



Extension to Conditionally Valid Assumptions
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Extension to Conditionally Valid Assumptions

• Researchers often run the following TWFE regression: 
 
                               Yit = αi + ξt+τGi ⋅ Postt + βTXi ⋅ Postt+ϵit
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Extension to Conditionally Valid Assumptions

• Researchers often run the following TWFE regression: 
 
                               Yit = αi + ξt+τGi ⋅ Postt + βTXi ⋅ Postt+ϵit

‣ Believe  is more plausible than ΔYi(g, z) ⊥⊥ Gi ∣ Xi ΔYi(g, z) ⊥⊥ Gi

‣ Simple improvements: (a) demean ; (b) add interaction terms 
 
                     

Xi

Yit = αi + ξt +τGi ⋅ Postt + βTXi ⋅ Postt+γTGi ⋅ Xi ⋅ Postt+ϵit

• Can leverage more flexible models of  on  for subgroups ΔYi Xi Gi = 1,0

‣ Transform data into wide form; replace  with Yi ΔYi

‣ Apply a variety of estimators developed for selection-on-observables designs 
  
(e.g., stratification, matching, balancing, IPW, AIPW, outcome modeling, double machine learning…)
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Extension to Multiple Pre- and Post-Periods
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Extension to Multiple Pre- and Post-Periods

• Lesson 1: Pretrend tests can help assess the parallel trends assumption, but not ΔY(g, z) ⊥⊥ G
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Extension to Multiple Pre- and Post-Periods

• Lesson 1: Pretrend tests can help assess the parallel trends assumption, but not ΔY(g, z) ⊥⊥ G

• Lesson 2: Using post-periods as non-event periods requires an additional “no carryover effect” assumption 
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Roadmap
• Motivation 

• Setup & Estimands 

• Identification 

• Extensions 

• Example: Clans and Calamity



Example: Clans and Calamity
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Example: Clans and Calamity

• Event — The Great famine (1958-1961)
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Example: Clans and Calamity

• Event — The Great famine (1958-1961) 

• G — Social Capital (proxied by genealogies) 

‣ No Genealogies:  412 counties 

‣ Have pre-PRC genealogies: 509 counties
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Raw Data: Group Means
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Conditional on Covariates
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Conditional on Covariates

• Pre-event Covariates  

‣ Log population size 

‣ Per capita grain production 

‣ Ratio of non-farming land 

‣ Urbanization ratio 

‣ Distance from Beijing 

‣ Distance from the provincial capital 

‣ Share of ethnic minorities 

‣ Rice suitability 

‣ Average years of education
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Dynamic Estimates
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Dynamic Estimates
Two-way Fixed Effects with Covariates
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Dynamic Estimates
Two-way Fixed Effects with Additional Interaction Terms
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Multi-valued G

#Genealogies per 10,000 people (sqrt scale)
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Multi-valued G

0: 412 counties (no genealogies) 
1: 254 counties (some genealogies) 
2: 255 counties (many genealogies) 
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Multi-valued G — AIPW Estimator

Motivation Setup & Estimands Identification Extensions Empirical Example Conclusion



Multi-valued G — AIPW Estimator
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Multi-valued G — AIPW Estimator
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Conclusion & Recommendations
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Conclusion & Recommendations

• We formulate Factorial DID as a research design with panel data when there is no clean control group
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Conclusion & Recommendations

• We formulate Factorial DID as a research design with panel data when there is no clean control group

‣ Corresponds to a hypothetical factorial experiment w/ group indicator and exposure as two factors

‣ Identifies effect modification under NA, PT

‣ Identifies causal moderation under NA, PT & ignorability

• What to do in practice

‣ Assess no anticipation and parallel trends assumptions (by checking pretrends)

‣ Justify  and show robustness of findings (e.g. by conducting sensitivity analysis)ΔY(g, z) ⊥⊥ G ∣ X

‣ If using TWFE models, demean covariates and add interaction terms Gi ⋅ Xi ⋅ Postt

‣ Should not automatically assume no carryover effects 

• Thank you!
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