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In 1986, Robert LaLonde published a paper based on part of his PhD thesis (LaLonde
1986), which has profoundly impacted both methodological and empirical liter-
atures on estimating causal effects. As of August 2024, this paper has been cited

roughly 3,000 times, a number that only partially reflects its tremendous impact on
causal inference field and the credibility revolution (Angrist and Pischke 2010). In
his paper, he assessed whether the then state-of-the-art nonexperimental evaluation
methods could match experimental benchmarks. LaLonde’s conclusion was ultimately
negative regarding the credibility of the range of nonexperimentalmethods he examined.
He wrote:

“This comparison shows that many of the econometric procedures do not
replicate the experimentally determined results, and it suggests that re-
searchers should be aware of the potential for specification errors in other
nonexperimental evaluations.” (LaLonde 1986, Abstract, p. 604),

and concluded that
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“policymakers should be aware that the available nonexperimental evalua-
tions of employment and training programsmay contain large and unknown
biases resulting from specification errors.” (LaLonde 1986, Conclusion, p.
617),

A year earlier, LaLonde’s thesis advisors Orley Ashenfelter and David Card had raised
similar concerns:

“we conclude that randomized clinical trials are necessary to reliably deter-
mine program effects.” (Ashenfelter and Card 1985, Abstract, p. 648)

Quickly after the publication of LaLonde’s paper, several other studies echoed his con-
cern about the credibility of nonexperimental methods in the context of the evaluation
of labor market programs (Fraker and Maynard 1987; Heckman et al. 1987), leading
to further skepticism about their value. A couple of years earlier Leamer (1983) had
raised concerns about the credibility of applied econometric methods more generally,
and had asked “Is Randomization Essential?” (Leamer 1983, p. 31).

In this article, we summarize our perspective on the lessons from the methodolog-
ical literature that followed LaLonde’s seminal paper. We argue that while some of
LaLonde’s original conclusions have stood the test of time, substantial progress has
been made in the methodological literature both in terms of improved estimators and
in the form of suggested additional analyses to assess the credibility of the primary
analyses. At this point, almost four decades after the publication of LaLonde’s paper, the
answer to his original question—whether nonexperimental methods can successfully
replicate experimental benchmarks—is more nuanced than his original conclusions.
First, it is clear now that sometimes we can, and we currently have better methods
both for achieving this when we can (with the methods used in the original paper now
largely discarded). Second, we now have methods for telling whether we can.

One important development that greatly increased the influence of the original
LaLonde study was that Rajeev Dehejia and Sadek Wahba (Dehejia and Wahba 1999,
2002) made the male subsample of the original data widely available.2 More recently,
Calónico and Smith (2017) have also reconstructed the female samples used in LaLonde
study. These public datasets are highly valuable for teaching and future research.3

Throughout the remainder of the paper, we refer to the data compiled by Dehejia and

2As part of a research project starting in a graduate class taught by Imbens and Rubin at Harvard in
1996, Dehejia and Wahba obtained the original data from LaLonde, stored on tapes. They successfully
located an old tape reader capable of retrieving the data. The data are now publicly available on Dehejia’s
website (https://users.nber.org/~rdehejia/data/.nswdata2.html) and have been extensively used in the
causal inference literature on causal inference.
3Using these public datasets, we create a detailed online tutorial to assist readers in implementing the
procedures discussed in this article. See https://yiqingxu.org/tutorials/lalonde/.

https://users.nber.org/~rdehejia/data/.nswdata2.html
https://yiqingxu.org/tutorials/lalonde/
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Wahba as the LaLonde-Dehejia-Wahba data and the reconstructed female samples as
the Lalonde-Calónico-Smith data.

Here are the five lessons we see as emerging from this literature. The first lesson
underscores the key role of the unconfoundedness assumption, which underpins most
modern covariate adjustment methods. This assumption implies that treatment assign-
ment is as if randomly assigned conditional on the observed covariates. The second
lesson emphasizes the importance of improving overlap—which captures how similar
the covariate distributions of the treatment and control groups are—before estimat-
ing treatment effects. The third lesson highlights the central role of the propensity
score, defined as the probability of being treated given observed covariates.4 While the
propensity score had barely reached the economics literature when LaLonde (1986) was
writing his thesis, it has since become a valuable tool not only for assessing overlap but
also as a crucial component of many modern estimators based on unconfoundedness.
The fourth lesson is the need to go beyond average causal effects and further investigate
effect heterogeneity, as this helps researchers gain a deeper understanding of how the
treatment works. Finally, validation exercises, such as placebo tests, for assessing the
critical assumptions are crucial for establishing the credibility of research. 5

To illustrate these lessons in practice, we reexamine the LaLonde data, including
the Lalonde-Dehejia-Wahba data, the original LaLonde male samples, and the Lalonde-
Calónico-Smith data.We also analyze a second data set where thesemethods are natural,
the Imbens-Rubin-Sacerdote lottery data from Imbens et al. (2001). We show that, once
sufficient overlap is ensured, various methods can produce similar and robust estimates
for the statistical estimand, that is, the covariate-adjusted difference in the average
outcomes between the treatment and control groups. However, these estimands lack
a causal interpretation if the unconfoundedness assumption is violated. To assess its
credibility, validation exercises such as placebo tests are critical, whereas goodness-of-fit
tests are largely irrelevant. For the LaLonde data sets, placebo estimates do not support
the unconfoundedness assumption. However, optimism is warranted: analyzing the
Imbens-Rubin-Sacerdote data, which benefit from a clearer assignment mechanism
(lottery) and more detailed pretreatment information, shows that placebo analyses do

4A key paper in this literature, Rosenbaum and Rubin (1983b), published just prior to LaLonde’s paper,
has the title “The Central Role of the Propensity Score in Observational Studies for Causal Effects.”
5We focus on five issues related to the particular setting studied in LaLonde (1986), the evaluation of
an intervention at the individual level, based on detailed background information on those individuals.
There is a literature on causal inference more broadly which has grown substantially over the nearly four
decades as well, as documented in Currie et al. (2020). We do not cover this broader literature here. There
are more comprehensive surveys of the general causal literature, (e.g., Abadie and Cattaneo 2018; Imbens
andWooldridge 2009), as well as numerous textbooks (Angrist and Pischke 2008; Imbens and Rubin 2015;
Cunningham 2018; Huntington-Klein 2021; Huber 2023; Ding 2024; Wager 2024; Chernozhukov et al.
2024). Here, we limit the discussion to five lessons learned from the subsequent literature for settings
similar to those in LaLonde (1986).
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support the unconfoundedness assumption.

LaLonde’s Findings

We first describe the data Lalonde used and explain the main econometric ap-
proaches in LaLonde (1986). We then examine the regression and selection model
estimates in his paper. After summarizing Lalonde’s findings, we proceed to describe
the Lalonde-Dehejia-Wahba data and explore some of the immediate responses to
LaLonde’s findings.

LaLonde’s Data

LaLonde (1986) analyzed the training effects of the National Supported Work
Demonstration (NSW) program for female andmale participants separately. The female
participants were drawn from the Aid to Families with Dependent Children (AFDC)
program. The male participants came from three other target groups, all with extremely
poor labor market prospects: ex-drug addicts, ex-criminal offenders, and high-school
dropouts. For both female and male participants, LaLonde used two main data sources
to construct comparison groups: CPS-SSA-1, drawn from Westat’s Matched Current
Population Survey–Social Security Administration File, includes all females or males
under 55 meeting Westat’s criteria; PSID-1, from the Panel Study of Income Dynamics,
includes all female or male household heads under 55 from 1975 to 1978 for males and
1979 for females who did not identify as retired in 1975. The age cutoff was chosen to
make the comparison group more comparable to the experimental sample.

LaLonde further refined these datasets based on criteria like employment status, time
of survey, and poverty status, creating four additional comparison groups: CPS-SSA-2,
CPS-SSA-3, PSID-2, and PSID-3. Our subsequent reanalysis will primarily focus on the
Lalonde-Dehejia-Wahba male samples because they are widely used in methodological
literature and because they include two pretreatment outcomes, earnings in 1974 and
earnings in 1975. Results based on the female samples are provided in the online
appendix.

Table 1 columns 1–4 provide summary statistics for the male samples in the ex-
perimental data and comparison groups used in LaLonde (1986). LaLonde showed
that respondents in the comparison groups were, on average, older, more educated,
substantially less likely to be high school dropouts, more likely to be married, and
less likely to be Black or Hispanic, than participants of the NSW experiment; they also
had substantially higher earnings in years before the program took place. The large
difference in average earnings between the comparison groups and the experimental
sample (on average, 1975 earnings were $3K in the experimental data, versus $14K in the
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Table 1.
Descriptive Statistics: LaLonde and Lalonde-Dehejia-Wahba Male Samples

Treated Control CPS-SSA-1 PSID-1 Treated Control
(1) (3) (4) (5) (6)

Age 24.63 24.45 33.23 34.85 25.82 25.05
(6.69) (6.59) (11.05) (10.44) (7.16) (7.06)

Years of School 10.38 10.19 12.03 12.12 10.35 10.09
(1.82) (1.62) (2.87) (3.08) (2.01) (1.61)

Proportion High School Dropouts 0.73 0.81 0.30 0.31 0.71 0.83
(0.44) (0.39) (0.46) (0.46) (0.46) (0.37)

Proportion Married 0.17 0.16 0.71 0.87 0.19 0.15
(0.37) (0.36) (0.45) (0.34) (0.39) (0.36)

Proportion Black 0.80 0.80 0.07 0.25 0.84 0.83
(0.40) (0.40) (0.26) (0.43) (0.36) (0.38)

Proportion Hispanic 0.09 0.11 0.07 0.03 0.06 0.11
(0.29) (0.32) (0.26) (0.18) (0.24) (0.31)

Real Eearnings in 1975 (thousand) 3.07 3.03 13.65 19.06 1.53 1.27
(4.87) (5.20) (9.27) (13.60) (3.22) (3.10)

Proportion Unemployed in 1975 0.37 0.42 0.11 0.10 0.60 0.68
(0.48) (0.49) (0.31) (0.30) (0.49) (0.47)

Real Eearnings in 1974 (thousand) NA NA 14.02 19.43 2.10 2.11
(9.57) (13.41) (4.89) (5.69)

Proportion Unemployed in 1974 NA NA 0.12 0.09 0.71 0.75
(0.32) (0.28) (0.46) (0.43)

#Observations 297 425 15,922 2,490 185 260

LaLonde
 NSW Experimental

LaLonde-Dehejia-Wahba
 Experimental

LaLonde
Comparison Groups

(2)

Note: Standard deviations are in the parentheses. Tables 3, 5, and 6 in LaLonde (1986) use data described
in columns 1–4. Dehejia and Wahba (1999) primarily use data described in columns 3–6.

CPS-SSA-1 sample and $19K in the PSID-1 sample) motivated LaLonde to construct the
other comparison groups, using earnings-based criteria. Note that the male CPS-SSA-1
sample, with 15,922 observations, is significantly larger than the male PSID-1 sample,
which has 2,490 observations.

The experimental treated units in the Lalonde-Dehejia-Wahba data are a subset of
the treated units in the original LaLonde data, specifically chosen to include information
on 1974 earnings. Using this subset turns out to be important as it allows analysts to
adjust for longer earnings histories and conduct additional placebo analyses.

Econometric Approaches

To estimate the causal effect of the NSW program on 1978 earnings using exper-
imental and nonexperimental data, LaLonde (1986) employed a variety of models,
which can be broadly divided into two categories: regression methods that rely solely
on an outcome model, referred to as the “earnings equation,” and selection models that
include an additional “participation equation.”

Regression estimates. In Tables 4 and 5 (attached in the appendix), LaLonde (1986)
presented results for the training effects on female and male participants, respectively,
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using seven different estimators based on six comparison groups, with minor specifica-
tion variations in the regression function for earnings. All regression models are linear
and assume that the error term has zero conditional mean, implying that the regressors
are uncorrelated with the error term and, therefore, exogenous. They also implicitly
assume a constant treatment effect. The seven models include (i) a simple regression
estimator both without or with controls for age, education, and race (but, notably, not
including earnings in 1975 in the set of controls); (ii) a difference-in-differences estima-
tor using 1975 earnings as the pretreatment outcome—hence, the original outcome is
replaced with a first-differenced outcome—both without or with controls for age; (iii) a
quasi-difference-in-differences estimator that places 1975 earnings on the right-hand
side of the regression to account for transitory shocks, also known as the Ashenfelter
dip (Ashenfelter 1978), both without or with controls for age, education, and race; and
(iv) a specification that controls for all pretreatment covariates, including pre-training
earnings and unemployment status in 1975, as well as marital status. The comparison
groups, as described above, include CPS-SSA-1 and PSID-1, as well as subsets thereof
with different selection criteria to make them more similar to the NSW sample. In-
terestingly, and somewhat anticipating the emphasis these analyses would receive in
contemporary literature, LaLonde also reported results from placebo tests using 1975
earnings as the placebo outcome.

LaLonde’s findings based on the linear regression model estimates are several-fold.
First, using the experimental NSW data, all seven estimators produce similar training
effect estimates around $851 for female participants and $886 for male participants, and
the estimated placebo effects are close to zero. Second, when using nonexperimental
comparison groups, the estimates diverge significantly from the experimental bench-
marks, often yielding large and negative values in both female and male samples with
small to modest standard errors. Third, these estimates vary widely, and specification
tests focusing on goodness-of-fit are unlikely to guide an analyst to the experimental
benchmarks. Collectively, these findings led LaLonde to conclude that none of the
regression adjustment methods popular at the time of his writing, when applied to
nonexperimental data, were credible.

Selection model estimates. In addition to these estimates based on exogeneity of the
treatment, LaLonde (1986) also presented results in Table 6 (attached in the appendix)
that account for endogeneity of the treatment indicator. This approach uses the two-
step estimator proposed by Heckman (1978), which allows the error terms in the
earnings equation and participation equation to be correlated. Identification relies on
the presence of covariates included (with non-zero coefficients) in the participation
equation but excluded from the earnings equation, or on an assumption of a joint normal
distribution for the error terms. For both female and male samples, LaLonde employed
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three comparison groups: the experimental controls, CPS-SSA-1, and PSID-1, and tested
four different specifications for females and three for males. Each specification uses a
distinct set of variables in the participation equation that are excluded from the earnings
equation. A priori, none of the specifications appears more justified by economic or
econometric theories than any other.

LaLonde reported that all selection model estimates using the experimental data
remain close to $851 for females and $886 for males. However, those based on nonexper-
imental data vary substantially across specifications and, as in the exogenous regression
case, deviate substantially from the experimental benchmarks. He concluded that while
the two-step procedure brings estimates closer to the experimental benchmarks, it still
results in a “considerable range of imprecise estimates” (LaLonde 1986, p. 617).

The LaLonde-Dehejia-Wahba Data

Dehejia andWahba (1999) focused solely onmale participants, stating that “estimates
for this group were the most sensitive to functional-form specification” (Dehejia and
Wahba 1999, p. 1054). They constructed a subsample from LaLonde’s original data that
includes participants with available 1974 earnings and unemployment status. Dehejia
and Wahba (1999) argued that this subsample remains a valid experimental sample
because its construction relies on pretreatment information only, such as month of
assignment and employment history, ensuring that treatment assignment remains
orthogonal to all pretreatment variables. Notably, this subsample contains only 62%
of the original treated group used by LaLonde. They also use the subsets of the same
six datasets as LaLonde for nonexperimental controls, which likewise contain 1974
earnings and unemployment information. This collection of datasets, referred to as the
LaLonde-Dehejia-Wahba data, is now widely used in causal inference literature.6

Columns 5 and 6 in Table 1 show summary statistics for the treated observations
in the Lalonde-Dehejia-Wahba data. The table shows that the NSW participants in the
Lalonde-Dehejia-Wahba treated sample had a higher unemployment rate in 1975 and
lower average earnings in 1975 compared to LaLonde’s original male samples. The 1974
earnings data, available only in the Lalonde-Dehejia-Wahba sample, suggest that many
Lalonde-Dehejia-Wahba participants faced long-term unemployment. These factors
may explain why the estimated training effect in the Lalonde-Dehejia-Wahba sample,
$1,794, is more than double that in LaLonde’s male sample, which is $886.

6In fact, most methodological research on causal inference uses a specific sample of the Lalonde-Dehejia-
Wahba data, with controls from CPA-SSA-1.
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Subsequent Literature

The publication of LaLonde (1986) ignited a vigorous debate in the applied econo-
metrics literature. Heckman and Hotz (1989) responded to Lalonde’s criticism of the
nonexperimental evaluation literature by suggesting the use of specification tests to
eliminate particularly poor estimators. However, this approach falls short in differenti-
ating among numerous estimators that adequately fit the data but are based on varying
identifying assumptions. As a result, this approach has not found many followers in the
subsequent literature.

Dehejia and Wahba (1999) introduced propensity score-based stratification and
matching methods to address LaLonde’s challenge. They obtained estimates close to
the experimental benchmark and concluded, in sharp contrast to LaLonde, that

“the estimates of the training effect for LaLonde’s ... dataset are close to the
benchmark experimental estimates and are robust to the specification of the
comparison group and to the functional form used to estimate the propensity
score. ... our methods succeed for a transparent reason: They use only the
subset of the comparison group that is comparable to the treatment group,
and discard the complement.” (Dehejia and Wahba 1999, p. 1062).

The contrast between the conclusions inDehejia andWahba (1999) and those in LaLonde
(1986) started an explosion of methodological work probing these conclusions. This led
to the development of additional robust estimators, systematic methods for accounting
for overlap, and placebo methods. We discuss these developments in the next section.

Methodological Improvements since LaLonde (1986)

This section begins by introducing the potential outcome framework. We then exam-
ine two key assumptions: unconfoundedness and overlap, followed by a brief discussion
of various estimation strategies applicable under these assumptions. Next, we discuss
alternative estimands, such as conditional average treatment effects and quantile treat-
ment effects, and the methods for estimating them. Finally, we highlight the importance
of supplementary analyses, primarily placebo tests, which are key to validating these
key assumptions and improving research credibility.

Potential Outcome Framework

To facilitate the discussion of the modern causal inference literature, we adopt the
potential outcomemodel originally used by JerzeyNeyman in the context of randomized
experiments (Neyman 1923/1990), and extended to nonexperimental studies by Donald
Rubin (Rubin 1974, 2006). For each individual i, for i = 1, . . . ,N, two potential outcomes
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exist: Yi(0) represents the outcome (earnings in 1978) had individual i not participated
in the NSW program, and Yi(1) represents the outcome for the same individual had
they participated in the program. The difference between those two potential outcomes,
τi ≡ Yi(1) – Yi(0) is the causal effect of the program for that individual. The binary
treatment for individual i, participation in the job training program, is denoted by
Wi ∈ {0, 1}. The realized outcome is Yi ≡ Yi(Wi) = (1–Wi)Yi(0) +WiYi(1). We also observe
pretreatment characteristics for each individual. In the LaLonde case, the basic vector of
covariates includes age, years of schooling, high school dropout status, marital status,
and indicators for African-American and Hispanic backgrounds. Following Dehejia
and Wahba (1999)’s analysis, we also consider settings where the covariate vector is
augmented to include two lagged earnings variables—earnings in 1974 and 1975—and
binary indicators for these lagged earnings being zero, indicating unemployment. Xi
denotes the vector consisting of all ten pretreatment covariates.

Our primary estimand is the average treatment effect for the treated (ATT),

ATT ≡ 1
Ntr

∑
i:Wi=1

{
Yi(1) – Yi(0)

}
,

where Ntr is the number of treated units. In other settings researchers may also be
interested in the average treatment effect ATE ≡ 1

N
∑N
i=1

{
Yi(1) – Yi(0)

}
.Most analyses

of the LaLonde data that explicitly allow for treatment effect heterogeneity focus on
the ATT, as it makes no sense to estimate or even contemplate the effect of the program
for those individuals in the control group who have long term jobs and high earnings.
LaLonde (1986) does not draw a distinction between these two estimands as he generally
did not explicitly discuss effect heterogeneity.

Of course, we cannot directly estimate the ATT because we do not observe the control
outcomes for the treated units, what (Holland 1986) called the “fundamental problem
of causal inference.” To make progress, let us define the statistical estimand, the covariate
adjusted difference in the average outcomes between treated and controls,

E
[
E[Yi|Wi = 1,Xi] – E[Yi|Wi = 0,Xi] |Wi = 1

]
.

This is an object we can estimate consistently given a random sample. However, it is
only under two critical assumptions, unconfoundedness and overlap, that this statistical
estimand is equal to the causal estimand, the ATT, which is the object of interest.

Part of the subsequent literature has focused on better statistical methods for esti-
mating the statistical estimand, the covariate adjusted difference, increasingly relying
on insights from the machine learning literature to deal with the potentially high-
dimensional nature of the pre-treatment variables. Formal results typically require
additional regularity conditions, such as the smoothness of conditional means and
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propensity scores, along with moment conditions. For a more formal treatment of this
topic, we refer readers to the original papers, as referenced in reviews such as Imbens
and Wooldridge (2009) and Abadie and Cattaneo (2018). It should be noted that this is
a purely statistical issue, and one that does not depend on whether unconfoundedness
holds, that is, on whether the statistical estimand is actually of interest.

A separate question concerns the plausibility of the assumptions, and in particular
the unconfoundedness assumption.Without that assumption,wemay be able to estimate
the covariate-adjusted difference robustly, but it may not be of any interest. Regarding
this second question, the literature has also made substantial progress. First, through
recognizing that this is in fact a separate issue, and second through the development of
placebo and sensitivity analyses.

Unconfoundedness

The unconfoundedness assumption, first introduced by Rosenbaum and Rubin
(1983b) as part of the “ignorable treatment assignment” concept that also includes
overlap, has played a crucial role in identifying average treatment effects using nonex-
perimental data. It states that, conditional on the covariates, the treatment assignment
is independent of the pair of potential outcomes:

Assumption 1 (Unconfoundedness).

Wi ⊥⊥
{
(Yi(0), Yi(1)

}
| Xi.

Identifying the ATT in fact only requires Wi ⊥⊥ Yi(0) | Xi , a weaker version of un-
confoundedness. The unconfoundedness assumption is also referred to as exogeneity
(Imbens 2004), conditional independence (Lechner 1999, 2002) or selection on observables
(Barnow et al. 1980). This assumption stands in contrast to traditional econometric
definitions of exogeneity that were articulated in terms of residuals, themselves defined
in terms of functional forms. Unconfoundedness elegantly separates the functional form
part of the assumptions from their essence. Essentially, it is sufficient that researchers
understand (a crucial aspect of) the design, or the treatment assignment mechanism,
without full knowledge of the data-generating process of the potential outcomes. A key
result in Rosenbaum and Rubin (1983b) shows that Assumption 1 implies

Wi ⊥⊥
{
(Yi(0), Yi(1)

}
| e(Xi),

in which e(Xi) ≡ Pr(Wi = 1 | Xi) is the propensity score for unit i. This result is important
in guiding many estimation strategies because it reduces the dimension of the condi-
tioning set from the number of pre-treatment variables (which can be substantial) to
one, the dimension of the propensity score.
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When the parametric outcome model (e.g., the earnings equation) is correctly speci-
fied, unconfoundedness implies a zero conditional mean for the error term. Thus, except
for those using a difference-in-differences approach, the estimates in Tables 4 and 5
of LaLonde (1986) can be interpreted as based on a combination of unconfounded-
ness and functional form assumptions. At the time of LaLonde’s study, however, the
design-based perspective had not yet gained popularity, and these specifications were
motivated almost entirely from an outcome modeling perspective.

In practice, unconfoundedness is a very strong assumption. For a general discussion
on this topic, we recommend Rosenbaum and Rubin (1983b) and Imbens (2004). While
we acknowledge concerns about its validity in the absence of a clear understanding of
the treatment assignment mechanism, we believe that supplementary analyses using
ancillary data and domain knowledge, such as placebo tests and sensitivity analyses, can
help assess the plausibility of this assumption and, by doing so, improve the credibility
of analyses based on it. We will illustrate the usage of placebo tests in the next section.
In the context of the LaLonde data, it is evident that all ten covariates are appropriate
pretreatment variables that should be controlled for. In other cases, whether one should
adjust for differences between treated and control units based on specific covariates is
less clear. Rosenbaum (1984) cautions against adjusting for variables that are affected
by the treatment. Cinelli et al. (2022) further discuss the selection of variables within
the set of proper pre-treatment variables to adjust for in causal analyses.

Overlap and Balance

To identify the average causal effect under unconfoundedness, we need to ensure
that we can estimate the average effect at every value for the covariates, requiring overlap,
or that the propensity score is between zero and one:

Assumption 2 (Overlap).
0 < Pr(Wi = 1 | Xi) < 1.

If the ATT is of interest, in fact only a weaker overlap assumption, Pr(Wi = 1 | Xi) < 1,
is required. Overlap is crucial in identifying the ATT when researchers are unwilling
to make functional form assumptions about the conditional means of the potential
outcomes and the extent of heterogeneity in the treatment effects. When Xi includes
fewer than a handful of covariates, inspecting pairs of the covariates’ marginal or joint
distributions by treatment status may be sufficient for assessing overlap. However,
this approach becomes impractical in high-dimensional settings. In such cases, a more
attractive method is to inspect the distribution of the propensity scores, estimated by
a flexible method, by treatment status. The lack of overlap in covariate distributions
implies, and is implied by, a lack of overlap in the propensity score distributions.
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LaLonde (1986) did not explicitly discuss overlap, nor did he inspect it beyond
report sample averages for covariates by treatment status. Both the regression and
selection model approaches he used assume correct functional forms, which allow for
interpolation or extrapolation of treatment effects across all covariate levels and their
combinations, thereby formally eliminating the need for overlap. However, even in the
absence of formal methods for addressing the full extent of the overlap assumption,
LaLonde was clearly concerned about the possible implications of lack of overlap be-
tween the experimental treated group and the comparison group based on CPS and
PSID data. As mentioned earlier, to improve comparability, he trimmed the original
comparison groups based on “characteristics [that] are consistent with some of the
eligibility criteria used to admit applicants into the NSW program” (LaLonde 1986, p.
611), aligned with the goal of improving balance on covariates that determine selection.
However, by modern standards, his methods, such as removing all male participants
working in March 1976 (CPS1-SSA-2) or further removing unemployed respondents
with 1975 incomes above the poverty line (CPS1-SSA-3), are ad hoc and do not necessarily
achieve overlap in all relevant covariates.

Since LaLonde (1986), many scholars have proposedmore principled and systematic
methods to improve overlap, often relying on propensity scores. These methods take
different forms, partly depending on whether simply overlap in the covariate distribu-
tions is sought, or whether, more aggressively, balance in the covariate distributions is
pursued. Overlap refers to the difference in the range of covariate values in treatment
and control groups. Balance refers to the similarity of the covariate distributions in treat-
ment and control groups. In expectation, balance is achieved by design in a completely
randomized experiment, and can be further improved upon through stratification prior
to the randomization.

Ensuring overlap or improving balance typically involves dropping some units
from the full sample. Although in principle this leads to some loss of information, the
improvement in robustness and reduction of bias may outweigh the loss in precision.
In fact, the potential increase in variance from a substantial amount of trimming of the
sample is typically modest. Suppose one has a sample with Ntr treated units, and Nco
control units. Under homoskedasticity and random assignment, the variance of the
difference in mean estimator is σ2(1/(Ntr + 1/Nco). For instance, if we start with Ntr = 185
treated units andNco = 15, 922 control units as in the LDW-CPS sample, dropping 15,737
control individuals to leave just 185 control individuals (a 99% reduction in the control
sample) increases the standard error only by 30% in the “best-case scenario,” which
assumes no bias from including the additional control individuals. In practice, concerns
about bias suggest that aggressive trimming may lead to more robust and credible
estimates.

Focusing on overlap alone, andwith the estimand theATT, Dehejia andWahba (1999)
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drop all control individuals with a propensity score less than the smallest propensity
score among the treated individuals. Crump et al. (2009) develop a more aggressive
approach to address the lack of overlap. They characterize subsamples optimized for
precise average treatment effect estimation, with a rule of thumb suggesting trimming
data with estimated propensity scores outside [0.1, 0.9]. Crump et al. (2006) and Li et al.
(2018) propose balancing covariates through propensity score weighting, introducing
the “overlap weights” that are proportional to the product of the propensity score and
one minus the propensity score. A third approach, particularly well suited to settings
where the focus is on the ATT, is to create a matched sample in which all treated units
are matched to a distinct control unit in terms of the estimated propensity score. Beyond
ensuring overlap, this method creates a sample that is much better balanced in the
covariate distributions.

In practice, overlap, like unconfoundedness, is critical for obtaining credible esti-
mates. This is particularly true in cases with poor overlap in the raw data, such as the
LaLonde samples. For such settings, trimming to ensure overlap is often more important
than the choice of specific estimation strategies.

Estimation Given Unconfoundedness and Overlap

All estimators in LaLonde (1986) are linear in the covariates. Subsequently, a variety
of methods have been proposed to estimate average causal effects in more flexible
ways under both unconfoundedness and overlap assumptions, a combination also
referred to as ignorable treatment assignment (Rosenbaum and Rubin 1983b).We divide
these methods into three groups: (i) outcome modeling, including linear regressions,
(ii) methods that directly adjust for covariate imbalance, including those based on
propensity scores, and (iii) doubly robust methods.

Outcome modeling. The simplest and still the most commonly used method by applied
researchers is a simple linear regression using the treatment indicator and covariates
(the level terms) as regressors, which resembles the earnings equation in LaLonde
(1986). The regression method models the conditional means of potential outcomes
parametrically and requires the treatment effect to be constant. Relaxing the functional
form assumptions slightly, one can use two separate linear regressions to model the
conditional means of the two potential outcome. This estimator is sometimes referred to
as the Oaxaca-Blinder estimators (Kline 2011). More generally, researchers can model
the two conditional means using semiparametric or nonparametric approaches (e.g.,
Heckman et al. 1997, 1998; Athey et al. 2019).
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Adjusting covariate imbalance. The second group of methods focuses on directly ad-
justing covariate imbalance between the treatment and control groups. This includes
blocking on covariates, covariate matching (e.g., Abadie and Imbens 2006, 2008, 2011,
2016; Diamond and Sekhon 2013; Imbens 2015), and weighting methods to achieve
covariate balance (e.g., Hirano et al. 2003; Hainmueller 2012; Zubizarreta et al. 2023;
Zubizarreta 2015).

When the number of covariates is large, particularly with many continuous variables,
simple covariate matching methods suffer from the curse of dimensionality, rendering
them either infeasible or prone to large biases (Abadie and Imbens 2006). Under such
circumstances, adjusting for differences in the propensity score, rather than attempting
to adjust for all covariates, is often beneficial. This can be implemented through vari-
ous methods, such as blocking/matching (e.g., Dehejia and Wahba 1999) and inverse
propensity score weighting (IPW). For example, Hirano et al. (2003) show that this Há-
jek estimator, a variant of the IPW estimator, can achieve the semiparametric efficiency
bound with a nonparametric estimator for the propensity score.

There are also attempts to improve covariate balance while estimating the propensity
score or without directly estimating it. For example, Imai and Ratkovic (2014) propose
covariate balancing propensity score estimated via the generalized method of moments
using covariate balance as moment conditions. Hainmueller (2012) proposes entropy
balancing to directly adjust for covariate imbalance. Research shows that entropy bal-
ancing can be seen as an IPW estimator with a linear propensity score model and a
logistic link (Zhao and Percival 2016).

Doubly robust methods. Neither outcome modeling nor the balancing methods are
currently the most recommended methods in the methodological literature. Instead,
scholars have developed various mixed methods that combine outcome modeling, such
as regression, with methods addressing covariate imbalance to achieve the benefits from
both. These methods include regression within propensity score blocks (Rosenbaum
and Rubin 1983a; Imbens 2015), matching combined with regression (Abadie and
Imbens 2011), and methods integrating weighting with regression (e.g., Robins et al.
1994; Robins and Rotnitzky 1995). The rationale for the mixed methods is that, although
covariate-balancing or propensity score methods by themselves may be consistent, or
even fully semiparametrically efficient, incorporating outcome models can improve
small sample performance by eliminating remaining biases or improving precision by
leveraging the correlation between the covariates and the outcome. For instance, while
the bias of a simple matching estimator might dominate variance in high-dimensional
cases, adding regression to account for the remaining imbalance can substantially reduce
such biases (Abadie and Imbens 2011).
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Robins and Ritov (1997) introduce the term “double robustness,” an important
concept for these mixed methods. They show that if either the propensity score or
regressionmodel is correctly specified parametrically, the augmented inverse propensity
weighting (AIPW) estimator that combines weighting and regression is consistent. They
can be viewed as combining an outcomemodel with an adjustment term, which consists
of an IPW estimator applied to the residuals from the outcome model.

In the past few years, machine learning methods have rapidly entered the toolkit of
applied researchers for estimating causal effects due to advancement in the method-
ological literature (Van der Laan and Rose 2011; Chernozhukov et al. 2017; Athey et al.
2018, 2019). Many of these estimators adopt the form of an AIPW estimator and satisfy
the “Neyman orthogonality” condition (Chernozhukov et al. 2018), which ensures the
stability of the moment conditions used to identify the causal parameter against small
perturbations in nuisance functions, including the conditional mean and the propensity
score. Chernozhukov et al. (2017, 2018) show a particularly attractive feature of what
they labeled the double/debiased machine learning estimators based on estimating the
influence function for the semiparametrically efficient estimator: they accommodate
slower convergence rates for the estimators of the nuisance functions.

Alternative Estimands and Heterogeneous Treatment Effects

Much of the methodological and applied research has focused on estimating average
treatment effects, such as the ATT. However, there are other quantities of interest to
researchers. For example, researchers are often interested in understanding variation in
the treatment effects. Understanding effect heterogeneity is crucial for discerning the
mechanisms and impacts of a policy, for a more precise evaluation of policy effective-
ness, and for guiding personalized policy assignments. Econometrically, researchers can
study heterogeneous treatment effects by estimating the conditional average treatment
effect on the treated (CATT), i.e., τ(x) ≡ 1

Nx
∑
i:Xi=x,Wi=1 τi, in which Nx is the number

of treated units whose covariate values equal to x. Researchers have proposed to use ma-
chine learning methods to estimate CATT nonparametrically or using low-dimensional
representations, such as causal forests, and obtain valid inference or error bounds (e.g.,
Athey and Imbens 2016; Wager and Athey 2015; Athey et al. 2019).

Another important but less commonly used group of estimands by empirical re-
searchers are the quantile treatment effects. They are defined as the difference between
the quantiles of the treated and untreated potential outcome distributions for the popu-
lation or the treated group. Because Assumptions 1 and 2 allow for the identification of
the full marginal distribution of Yi(0) and Yi(1), quantile treatment effects are identified
under those assumptions. Firpo (2007) proposes a semiparametrically efficient estimator
for these quantities, combining conditional quantile estimations with IPW. See Bitler
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et al. (2006) for an application to the LaLonde data. One potentially underexplored area
in the literature is that estimates of CATT or quantile treatment effects can inform the
plausibility of the unconfoundedness assumption, given that researchers often possess
insights into the range of these effects.

Validation through Placebo Analyses

While researchers can assess overlap using observed data, the unconfoundedness as-
sumption is not directly testable. To evaluate the credibility of treatment effect estimates,
the literature has developed two main approaches: placebo analyses and sensitivity
analyses. Due to space limitations, we discuss the former and relegate the latter to the
online appendix.

Placebo analyses indirectly assess unconfoundedness by formally testing a condi-
tional independence restriction. This testable assumption differs from unconfounded-
ness in two aspects. First, it conditions on a subset of the full set of covariates that appear
in the unconfoundedness assumption. Second, it uses one of the remaining covariates
as a pseudo-outcome that serves as a proxy for the target outcome. A common placebo
test estimates the treatment effect on a pretreatment variable, known to be unaffected by
the treatment. A lagged outcome is an appealing choice as it is typically a good proxy
for the target outcome.7

Lalonde regressed 1975 earnings, which predated the program, on the treatment
indicator and covariates, and reported findings in columns 2 and 3 of Tables 4 and 5. He
found that most nonexperimental estimates are negative, large, and often statistically
significant, indicating a potential violation of unconfoundedness. Although LaLonde
did not explicitly use the term, this approach is what we would now call a placebo
test. One limitation of the LaLonde data is the availability of only one pretreatment
outcome. With the Lalonde-Dehejia-Wahba data, we can test whether 1975 earnings are
correlated with participation in the job training program, conditional on 1974 earnings
and other covariates. With additional pretreatment periods, as in the Imbens-Rubin-
Sacerdote data (with six lagged outcomes), researchers can construct placebo tests
that are statistically more powerful and substantively more credible. A limitation of
LaLonde’s analyses is that he only tested one aspect of the full conditional independence
assumption, i.e., whether the two conditional means, averaged over the conditioning
variables, are the same. Imbens (2015) discusses testing additional implications of the
conditional independence relationship.

7Other forms of placebo tests include estimating the effect of a pseudo-treatment on the outcome, often
using multiple control groups. For further details, see Rosenbaum et al. (1987); Imbens and Rubin (2015);
Imbens (2015).
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Reanalyzing the LaLonde and Imbens-Rubin-Sacerdote Data

To demonstrate the methodological advances since LaLonde (1986) in practice, we
revisit the LaLonde data, including both the LaLonde-Dehejia-Wahba data, the original
Lalonde male samples, and the Lalonde-Calónico-Smith female samples. Overlap is a
major concern for all of these datasets. We also analyze the Imbens-Rubin-Sacerdote
lottery data, where extensive pretreatment information is available and overlap is less
concerning. We focus on the ATT as the main causal quantity of interest for both the
LaLonde and Imbens-Rubin-Sacerdote datasets.

Figure 1. Assessing the Overlap in Lalonde-Dehejia-Wahba (LDW) Data
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D. Trimmed LDW-CPS
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Note: Histograms depict the log odds ratios, i.e., log ê
1–ê , using propensity score estimated through

generalized random forest. Each subfigure represents a different sample. Ntr and Nco represent the
numbers of treated and control units, respectively. Subfigure A: LDW-Experimental. Subfigure B:
LDW-CPS. Subfigure C: LDW-PSID. Subfigure D: Trimmed LDW-CPS. Subfigure E: Trimmed
LDW-PSID. For C and D, the propensity scores are re-estimated after trimming.

The LaLonde Data

We primarily focus on the Lalonde-Dehejia-Wahba (LDW) data because information
on earnings and employment status in 1974 is available. We use three LDW datasets: (1)
LDW-Experimental, which consists of 185 treated and 280 control individuals from the
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experimental data; (2) LDW-CPS, including the same treated individuals and 15,992
controls from CPS-SSA-1; and (3) LDW-PSID, comprising the same treated individuals
and 2,490 controls from PSID-1. We do not use CPS-SSA-2 and CPS-SSA-3 controls as
they are subsets of CPS-SSA-1, and similarly, we do not use PSID-2 and PSID-3 as they
are part of PSID-1. LaLonde’s construction of these subsamples was a relatively ad hoc
approach to improving overlap. We use more modern, fully data-driven ways to detect
and address issues related to overlap.

Figure 1 (A)-(C) display the overlaps in propensity score estimated fromGeneralized
RandomForest (GRF,Athey et al. 2019) between the treated and control units for all three
samples, using histograms of the log-odds of propensity scores, i.e., log (ê/(1 – ê)). In (A),
as expected, LDW-Experimental shows almost perfect overlap, with the distributions of
estimated propensity scores closely mirroring each other between the treatment and
control groups. In (B) and (C), however, both nonexperimental samples show very poor
overlap and balance. Most notably, the propensity scores of many treated units do not
lie within the support of the controls’ propensity scores, and a substantial proportion
of the control units possess extremely low log odds. Similar patterns are observed with
the original LaLonde male samples presented in the online appendix.

Trimming to improve overlap. We construct two trimmed samples using LDW-CPS and
LDW-PSID to improve overlap between experimental and nonexperimental units, which
takes two steps.We start bymerging experimental controls fromLDW-Experimental into
LDW-CPS and LDW-PSID and estimating the propensity of each unit being included in
the experiment using GRF. We then trim the based on set thresholds, resulting in the
exclusion of some treated units (Crump et al. 2009). After trimming, we re-estimate the
propensity scores using the remaining data, and perform 1:1 matching to further trim
the nonexperimental controls. This procedure yields two sets of trimmed samples: one
composed of experimental treated units and nonexperimental controls, and another
serving as an experimental benchmark.8 As shown in Figure 1(D)-(E), overlap improves
significantly in both samples post-trimming, though this comes with the cost of reduced
sample sizes.

Estimating the ATT. Next, we estimate the ATT using both the original Lalonde-Dehejia-
Wahba nonexperimental samples and the newly constructed trimmed samples.We apply
a variety of estimators, including simple difference-in-means, regression, regression
with interactions (Oaxaca-Blinder), generalized random forest as an outcome model,

8The procedure is designed to improve overlapwhile obtaining experimental benchmarks for the trimmed
samples. We discuss its details in the online appendix. When researchers have only one observational
dataset, a one-step trimming based on the estimated propensity score is advised.
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nearest neighbor matching with bias correction, IPW with propensity scores estimated
by GRF, covariate balancing propensity score, entropy balancing, double/debiased
matching learning using elastic net (DML-ElasticNet), and AIPW implemented via
generalized random forest (AIPW-GRF). All estimators use the same set of ten covariates
as before.

Figure 2.
ATT Estimates Given Unconfoundedness: LaLonde-Dehejia-Wahba (LDW) Samples
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Note: The figures above show the ATT estimates and their 95% confidence intervals using four different
samples: LDW-CPS and Trimmed LDW-CPS (left panel), and LDW-PSID and Trimmed LDW-PSID (right
panel). Estimates based on corresponding experimental samples are presented at the top. Ten estimators
are employed, including difference-in-means, linear regression, linear regression with interactions, Gen-
eralized Random Forest (GRF) as an outcome model, 1: 5 nearest neighbor matching with bias correction,
inverse propensity score weighting with propensity scores estimated by GRF, covariate-balance propen-
sity score, entropy balancing, double/debiased machine learning with elastic net (DML-ElasticNet),
implemented using DoubleML, and augmented inverse propensity score weighting (AIPW) with GRF,
implemented using grf. Difference-in-means estimates are not shown because they are extreme with
LDW-CPS and LDW-PSID at $-8,497 and $-15,204, respectively, and similar to other estimates in the two
trimmed samples at $1,483 and $-1,505.

We present the findings in Figure 2. The first two panels present the ATT estimates
and their 95% confidence intervals from LDW-CPS and LDW-PSID, while the third
and fourth panels show the results from the trimmed samples with improved overlap.
In each figure, the ATT estimates using experimental data and their 95% confidence
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intervals are highlighted with a red dashed line and pink band, respectively.
As shown in the first column of Figure 2, when using LDW-CPS, all estimators, except

difference-in-means, produce positive estimates, although there are noticeable variations
among them. Nearest neighbor matching outperforms other estimators, aligning closely
with the experimental benchmark of $1,794. Notably, covariate balancing propensity
score, entropy balancing, and AIPW-GRF also produce results close to the benchmark.
Despite numerical differences, these estimates, except for difference-in-means, cannot be
statistically distinguished from one another. The second column of Figure 2 shows that
estimates based on LDW-PSID exhibit greater variations. Setting aside the difference-in-
means, the estimates span from $4 to $2,420. Among them, the AIPW-GRF estimator
produces an estimate closest to the experimental benchmark.

The last two columns of Figure 2 show that by using trimmed data with improved
overlap, estimates produced by various estimators are substantially more stable. For
trimmed LDW-CPS, all estimates hover around the experimental benchmark of $1,911.
In the case of trimmed LDW-PSID, the experimental benchmark stands at $306, and it is
not statistically significantly different from zero at the 5% level. While each estimator
yields results that are closely aligned, they all have a negative sign. They are statistically
indistinguishable from the experimental benchmark due to the large uncertainties
associated with these estimates. The stability of the range of estimators after trimming
is also found in the simulations in Athey et al. (2021).

These findings suggest that improved overlap based on observed covariates can
reduce model dependency and estimate variability across different estimators, leading
to more robust estimates of the statistical estimand. However, this does not guarantee
consistency without validating unconfoundedness. The fact that many methods pro-
duce estimates that match the experimental benchmark for the ATT using LDW-CPS
might have instilled unwarranted confidence in researchers that modern estimators can
help achieve causal identification even when there are no compelling reasons to believe
unconfoundedness. In other words, while modern methods may be effective in estimat-
ing the statistical estimand, the covariate-adjusted difference in the average outcomes
between the treated and control groups, this does not mean that the adjusted difference
is close to the causal estimand, which is the ATT. For that, we need some version of the
unconfoundedness assumption, which is fundamentally untestable. However, we can
assess its plausibility, even if we cannot formally test it.

Validation through placebo analyses. We conduct placebo analyses to further assess how
plausible unconfoundedness is. To do so, we select earnings in 1975 as the placebo
outcome and remove both earnings in 1975 and employment status in 1975 from the set
of conditioning variables. Two new trimmed samples are also created without using
earnings and employment status in 1975. We then estimate the ATT for the placebo
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outcome, adjusting for the remaining covariates using a variety of estimators. Figure 3
presents the findings. Not surprisingly, the experimental benchmarks are near zero and
statistically insignificant. However, all estimators using nonexperimental data generate
large, negative estimates. Again, with trimmed data, the estimates are stable but remain
statistically different from zero. Moreover, we further show in the online appendix that
that while the CATT estimates from the experimental data hover close to zero, their
nonexperimental counterparts are all negative and substantial in magnitude, indicating
large biases.

Figure 3.
Placebo Tests: ’75 Earnings as the Outcome

AIPW−GRF

DML−ElasticNet

Entropy Balancing

Covariate Balance
Propensity Score

Inverse Propensity
Score Weighting

Nearest Neighbor
Matching

Generalized
Random Forest

Regression w/
Interactions

Regression

Experimental
Banchmark

−6000 −4000 −2000 0 2000 4000 6000

LDW−CPS

Full
Trimmed

−6000 −4000 −2000 0 2000 4000 6000

LDW−PSID

Note: The figures above show the placebo estimates and their 95% confidence intervals using four different
samples: LDW-CPS and Trimmed LDW-CPS (left panel), and LDW-PSID and Trimmed LDW-PSID (right
panel). Estimates based on corresponding experimental samples are presented at the top.We use the same
ten estimators as before. The difference-in-means estimates are not shown; they are $-12,118, $-17,531,
$-14,56, and $-4,670 in the four panels, respectively.

Alternative samples. For comparison, we also revisit the original male samples used
in LaLonde (1986) and AFDC female samples reconstructed by Calónico and Smith
(2017). Information on 1974 earnings and employment status is unavailable in these
datasets. We report the findings in the online appendix. For the LaLonde male sample,
we find that, with sufficient overlap, most modern estimators yield estimates within
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relatively narrow ranges when using either CPS-SSA-1 or PSID-1 as control groups.
However, these estimates do not align with the experimental benchmarks, with most
estimates being negative. Smith and Todd (2001, 2005) report similar, negative findings.

Using the Lalonde-Calónico-Smith (LCS) female samples, we find that many mod-
ern methods yield estimates close to the experimental benchmarks, though standard
errors are often quite large. While selection appears to be less severe for AFDC women
compared to the male NSW participants, as suggested by Calónico and Smith (2017),
overlap remains a significant challenge. Additionally, we fail to substantiate the uncon-
foundedness assumption with a placebo test using the number of children in 1975, a
variable absent in LaLonde’s anlysis, as the placebo outcome.

Summary. After reexamining the LaLonde data, we offer some new insights into the
challenge posed by LaLonde. First, we agree with existing literature that ensuring
overlap and using comparable control units are essential for credible causal estimates.
Second, while the choice of method is less critical with overlap, as most methods yield
similar results, the propensity score remains a vital tool for assessing overlap and is
integral to many estimators. Moreover, we stress the need for additional tests to validate
unconfoundedness. With the LDW and LCS data, many methods approximate the
experimental benchmark for the average effects under overlap, a success not mirrored
with the original LaLondemale samples. However, even with LDW or LCS data, placebo
tests fail to support unconfoundedness.

Lottery Prizes on Labor Earnings

We now turn to the Imbens-Rubin-Sacerdote lottery data. The authors carried out
an original survey to investigate the impact of the size of lottery prizes in Massachusetts
during the mid-1980s on the economic behavior of lottery players. The primary outcome
is post-winning labor earnings. This empirical example is appealing for two reasons: (i)
we have a much better understanding of the treatment assignment process (lottery),
and (ii) six periods of lagged outcomes are available to validate the unconfoundedness
assumption.

There are three treatment and control groups. The control group, termed “non-
winners,” consists of 259 season ticket holders who have won a small, one-time prize,
ranging from $100 to $5,000 (in essence, they are one-time, minor winners). The treat-
ment groups, labeled “big winners” (43 individuals) and “small winners” (194 indi-
viduals), are those who clinched a major prize. They might be season ticket holders or
one-time buyers. The annual installments for these prizes ranged from $1,139 to $99,888
(small winners) and exceeded $100,000 (big winners), respectively. These prizes were
disbursed in yearly installments for over 20 years.
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While randomization should ideally ensure that the treatment and control groups
are comparable at the time of the lottery entry, the authors highlight three potential
reasons this might not be the case. First, individuals can purchase multiple tickets,
increasing their odds of winning. Second, those who hold season tickets might differ
from those who buy single tickets. Lastly, there were discrepancies in the response rates
between winners and non-winners (49% and 42%, respectively), and these response
rates could be influenced by a range of factors, as evidenced by the decline in response
probability with the magnitude of the prize. However, the authors expect that the
unconfoundedness assumption will hold once they condition on a set of observable
covariates, including the year of winning and the number of tickets bought. Importantly,
they also gathered data on past labor earnings for up to six years before the individuals
won a prize. These past outcomes can be utilized either as conditioning variables or as
placebo outcomes.

Figure 4.
Assessing Overlap in the Imbens-Rubin-Sacerdote Lottery Data
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generalized random forest. Ntr and Nco represent the numbers of treated and control units, respectively.

In the subsequent analysis, we will consider labor earnings from seven post-lottery-
winning periods as the outcomes. These are denoted as Yi,0, ..., Yi,6, where t = 0 repre-
sents the year of winning a lottery—recall that individuals in the control group also
received a modest, one-time prize that year. We will treat the labor earnings from the
three years immediately preceding the lottery win, i.e., Yi,–3, Yi,–2, Yi,–1, as well as their
average, as placebo outcomes. The labor earnings from the three years before those,
i.e., Yi,–6, Yi,–5, Yi,–4, will be used as covariates for adjustment, alongside a set of time-
invariant pre-lottery-winning variables. These include the number of tickets purchased,
gender, employment status at the time of winning, age when the lottery was won, total
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years of education, and the presence of a college degree. Figure 4 assesses the overlap
between the two treatment groups and the control group using the mentioned covari-
ates. The figure indicates that while the propensity score distribution of individuals in
the treatment groups differ from that of the control group, the propensity scores of the
treatment groups still fall within the support of the control group.9

We estimate the ATT for labor income from Year –3 to Year 6 separately using
both difference-in-means and AIPW-GRF. Figure 5 shows the results. The represen-
tation resembles an event study plot used in panel data analyses, although our main
identification assumption is unconfoundedness. In estimating the effect of big prizes,
AIPW-GRF using the original or trimmed data produces estimates very similar to a
simple difference-in-means estimator, suggesting minimal selection between the two
groups. On the other hand, when estimating the effect of small prizes, the estimates
from AIPW-GRF and difference-in-means diverge. However, findings from the former
are much more credible than those from the latter because difference-in-means does
not fare well in the placebo tests, whereas the former yields placebo estimates that are
nearly zero. AIPW-GRF using either the original or the trimmed sample produce results
aligned with the findings reported in the original paper: winning a large prize leads
to a significant decrease in labor income in the following years, averaging as much as
$8,000 annually. In contrast, winning a smaller prize results in a more modest decline,
averaging approximately $3,000 per year.

In the lottery study, placebo tests provide strong evidence for the unconfoundedness
assumption, bolstering the credibility of the causal estimates. Importantly, unconfound-
edness is much more believable in this study than in the LaLonde case because the
inherent randomization of lotteries played a key role in treatment assignment, while
supplementary covariates help account for discrepancies between treatment and control
groups stemming from challenges like differential responses to the survey. The inclusion
of six preceding outcomes also proves invaluable, as they likely explain both selection
and the outcome variables; moreover, they also serve as good candidates for placebo
outcomes, given their comparability to these outcomes.

Lessons Learned

What specifically has the methodological literature since LaLonde (1986) taught us?
What particular analyses would we recommend a researcher analyzing data of this type
do in the light of the subsequent theoretical research? What insights do the reanalyses
of the LaLonde and Imbens-Rubin-Sacerdote datasets provide?

9To improve overlap, we further trim the control group for each of the two treatment groups by imple-
menting 1:1 matching based on propensity scores, resulting in two trimmed samples.
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Figure 5.
Lottery Prizes on Labor Earnings: Imbens-Rubin-Sacerdote Data
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A. ATT: Big Winners vs Non-Winners
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B. ATT: Small Winners vs Non-Winners

Note: Figures show the ATT estimates using the Imbens-Rubin-Sacerdote data. The outcome variables
include earnings from 3 years before winning to 6 years after winning. The estimates for pre-winning
outcomes serve as placebo tests. Adjusted covariates include: time of playing, #tickets bought, gender,
work then, age at winning, years of education, college degree, and earnings 6 to 4 years before winning.
We use the difference-in-means estimator (gray diamonds) and the AIPW-GRF estimator (black solid
circles for the original data and red triangles for the trimmed data).

First, for the type of data used in LaLonde’s paper, the literature has predominantly
focused on methods based on the unconfoundedness (or, using other terms, exogene-
ity, ignorability, conditional independence, or selection-on-observables) assumption.
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Although LaLonde (1986), as well as Heckman and Hotz (1989) and others, explored
alternative identification strategies in their analyses, including difference-in-differences
and selection models, these methods are rarely applied to the LaLonde data in the
subsequent literature. No compelling case has been made that other identification strate-
gies are credible in that context. The lack of alternatives, of course, does not make the
unconfoundedness assumption itself credible. The positive case for an analysis based on
unconfoundedness is as follows: with the LaLonde data, or similar datasets, we argue
that comparing treated and control untis identical or similar in terms of the full set
of available pretreatment variables makes a causal interpretation more plausible than
any other comparison between treated and control units. Any alternative strategy that
would lead to point-identification would involve comparing treated and control units
with different values for the pretreatment variables, which, in our view, makes a causal
interpretation less credible. For that reason, we focus in this discussion on methods
relying on unconfoundedness assumptions. For recent reviews of panel methods, see
Xu (2023) and Arkhangelsky and Imbens (2024).

Second, and this is perhaps the most important insight, the literature has recognized
the crucial role of assessing overlap in covariate distributions and dealing directly with
the lack thereof. The various comparison groups LaLonde (1986) used to evaluate
nonexperimental methods all differ substantially from the experimental sample in
terms of the distributions of the covariates. This creates challenges for conventional
statistical adjustment methods such as regression and matching. LaLonde attempted to
address these by simply discarding individuals in the comparison groups who do not
meet certain specific eligibility criteria based on age, employment status and earnings.
The subsequent literature has emphasized that, in practice, lack of overlap is a key
issue in such analyses. Effective and systematic, data-driven, ways of diagnosing, and
addressing this lack of overlap have been developed subsequently.

Third, and somewhat related to the overlap issue, the role of the propensity score in
estimation has been stressed. There are two components to this role. First, the propensity
score plays an important role in uncovering and addressing the lack of overlap in co-
variate distributions. Second, it is important in the estimation of treatment effects, either
directly through inverse propensity score weighting (IPW) or, more importantly in the
current state-of-the-art approaches, as part of doubly robust methods that incorporate
both models for the conditional outcome distributions and the models for the propen-
sity score. Propensity scores played no role in LaLonde’s analyses. In fact, the term
“propensity score” does not appear. The paper that introduced the propensity score,
Rosenbaum and Rubin (1983b), and which by now has over 37,000 Google Scholar
cites, had only recently been published at that time and had not yet influenced the
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econometrics literature.10 Subsequently, recognizing the importance of modeling both
the assignment mechanism and the conditional outcome distribution has spurred the
development of various doubly robust methods. First introduced by Scharfstein et al.
(1999), thesemethods are now generally viewed as themost attractivemethods based on
unconfoundedness in practice. The incorporation of machine learning techniques into
causal inference has further enabled this by reducing the need for ad hoc specification
searches.

Fourth, effectivemethods have emerged for other estimands, such as conditional aver-
age treatment effects for the treated (CATT)—conditional on (possibly high-dimensional)
covariates—and quantile treatment effects. In many cases, decision-makers seek to un-
derstand not just the average effects for the entire population but also the extent and
nature of effect heterogeneity, or even to estimate personalized assignment rules. Do
some subpopulations benefit more from the treatment than others? Do some experience
negative effects? The availability of large datasets has led to the development of effective
ways of estimating heterogeneous treatment effects (e.g., Wager and Athey 2018).

Finally, scholars have come to realize the importance of establishing the credibility
of estimates through validation exercises, particularly placebo analyses. LaLonde (1986)
did some placebo analyses looking at the estimated effect for lagged earnings, but
primarily focused on the comparisons between nonexperimental and experimental esti-
mates of average treatment effects. The recent empirical literature has placed significant
emphasis on supporting main estimates with supplementary analyses, which often take
the form of placebo analyses that present estimates of causal effects known to be zero.

Based on these lessons, we offer the following concrete recommendations to practi-
tioners:

• Begin analyses of causal effects with an effort to understand the assignment mecha-
nism. A clear grasp of the “design” is crucial for the credibility of the unconfound-
edness assumption.

• Estimate the propensity score using a flexible method. Assess overlap by plotting
the distributions of propensity scores for treated and control units. Trim the data
based on the propensity score to make the groups more comparable.

• Apply modern methods, such as doubly-robust estimators, to estimate the aver-
age causal effects. Explore alternative estimands, such as the conditional average
treatment effects and quantile treatment effects.

• Perform placebo tests, such as those using pretreatment outcomes, to validate uncon-

10The first mention of the propensity score in the econometrics literature appears to be Card and Sullivan
(1988). Interestingly, they cite Rosenbaum and Rubin (1984) rather than the original propensity score
paper Rosenbaum and Rubin (1983b).
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foundedness. Conduct sensitivity analyses to gauge the robustness of the findings.

We also provide a detailed online tutorial with R code to assist researchers in imple-
menting these methods.
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Appendix A. Tables 4-6 in LaLonde (1986)

The following tables are adapted from Tables 4, 5, and 6 in LaLonde (1986). We thank Robert
LaLonde’s estate for allowing us to include these tables in the Appendix.
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